FACULTY
OF MATHEMATICS
AND PHYSICS

Charles University

BACHELOR THESIS

Jan Soukup

Parity vertex colorings

Department of Theoretical Computer Science and Mathematical Logic

Supervisor of the bachelor thesis: Mgr. Petr Gregor, Ph.D.
Study programme: Computer Science

Study branch: General Computer Science

Prague 2018

I declare that I carried out this bachelor thesis independently, and only with the
cited sources, literature and other professional sources.

I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University has the right to conclude a license agreement on the use of
this work as a school work pursuant to Section 60 subsection 1 of the Copyright
Act.

In ... date signature of the author

Title: Parity vertex colorings
Author: Jan Soukup

Department: Department of Theoretical Computer Science and Mathematical
Logic

Supervisor: Mgr. Petr Gregor, Ph.D., Department of Theoretical Computer
Science and Mathematical Logic

Abstract: A parity path in a vertex colouring of a graph G is a path in which
every colour is used even number of times. A parity vertex colouring is a vertex
colouring having no parity path. Let x,(G) be the minimal number of colours in
a parity vertex colouring of G. It is known that x,(B,) > \/n where B, is the
complete binary tree with n layers. We show that the sharp inequality holds. We
use this result to obtain a new bound x,(7") > +/logn where 7" is any binary tree
with n vertices.

We study the complexity of computing the parity chromatic number x,(G). We
show that checking whether a vertex colouring is a parity vertex colouring is
coNP-complete and we design an exponential algorithm to compute it. Then
we use Courcelle’s theorem to prove the existence of a FPT algorithm checking
whether x,(G) < k parametrized by k and the treewidth of G. Moreover, we
design our own FPT algorithm solving the problem. This algorithm runs in
polynomial time whenever k£ and the treewidth of G is bounded. Finally, we
discuss the relation of this colouring to other types of colourings, specifically
unique maximum, conflict free, and parity edge colourings.

Keywords: parity vertex colouring, conflict free colouring, unique maximum
colouring, binary tree, treewidth, FPT

i

I would like to thank my supervisor, Mgr. Petr Gregor, Ph.D., for his advice and
the support he gave me.

1ii

Contents

Introductionl 2
Preliminarics 4
(I Bounds on the parity vertex chromatic number| 6
[I.1 ~Properties of the parity chromatic number of paths, cycles, and trees| 6
(1.2 Lower bound on the parity chromatic number of subdivisions of [

[complete binary trees| 8
(1.3 New sharp bound on the parity chromatic number of subdivisions |

| of complete binary trees| 10
(1.4 Lower bound on the parity chromatic number of binary trees . . . 12
[1.5 Parity vertex colouringof Qs|. 15

2 Complexity of computing the parity vertex chromatic number| 17
2.1 coNP - completeness| 17
[2.2 Brute-force approach| o 0000 18
2.3 Algorithms for trees|. 23
[2.3.1 Verifying the correctness of a colouring| 23

[2.3.2 Computing the parity chromatic number of trees|. 24

[3 Algorithms for graphs with bounded treewidth| 27
[3.1 Introduction to parametrized complexity| 27
8.2 Courcelle’s theoreml, 30
[3.3 FPT algorithm computing the parity chromatic number|{. 34
[3.3.1 Verifying the correctness ot a colouring using tree decom- [

[positions|o 34
[3.3.2 Computing the parity chromatic number using tree decom- [

[positions| 45
[4 Relations to other types of colourings| 51
[4.1 Vertex colourings| 51
[4.1.1 Complexity of computing the unique maximum and the [

[conflict free chromatic numbers 53
[4.2 Parity edge colouring| L. 54
Conclusionl 55
[Bibliography| 56
[List of Figures| 57

Introduction

In this thesis we study parity vertex colourings of graphs. A colouring of vertices
of a graph G is a parity vertex colouring if for every subpath P of G there exists
at least one colour used odd number of times on P. A parity vertex chromatic
number x,(G) is the minimal number of colours used in a parity vertex colouring
of G.

This colouring was independently introduced by Cheilaris and Téth [5] and
Borowiecki et al. [3]. Cheilaris and Té6th [5] introduced it as a relaxation of conflict
free and unique maximum colourings that is useful for proving lower bounds on
the minimal number of colours in these colourings. A conflict free colouring (in
the literature also known as a conflict free colouring of hypegraphs with respect to
paths) is a colouring of vertices of G such that for every path P in G there exists
a colour used exactly once on P. The main application of conflict free colourings
is in frequency assignment for cellular networks. The conflict free colouring was
studied in [6] [B].

This colouring is itself a relaxation of a unique maximum colouring. A unique
mazximum colouring (in the literature also known as a unique maximum colour-
ing of hypergraphs with respect to paths, or alternatively as a vertex ranking)
is a colouring of vertices of G with integers such that for every path P in G
the maximum colour used on P is used exactly once on P. This colouring has
many applications including sparse Cholesky factorization [I3] or VLSI layout
[T4]. Theoretical and algorithmic properties of this colouring were studied in
many papers, see e.g. [2, (6] 3.

Borowiecki et al. [3] began the study of the parity vertex colouring inspired
by the work on the edge variant of this problem. The study of the parity edge
colouring was initiated by Bunde et al. [4] and continued by Hsu and Chang [11].
It was motivated by the fact that this colouring is closely related to the problem
of deciding whether a graph embeds in the hypercube and the hypercube is one
of the most popular architectures used for parallel computations [12].

Our work

In the first chapter we study theoretical properties of the parity vertex chromatic
number. It is easy to see that it is monotone under the subgraph relation. We
show that it is not monotone under the minor relation. Cheilaris et al. [6] use the
parity vertex chromatic number as a tool to prove lower bounds on the conflict
free chromatic number. They proved that for every subdivision B* of a complete
binary tree By (i.e. a tree obtained from the complete binary tree by replacing
edges with paths) it holds that x,(B*) > Vd. They did it by proving that every
such coloured subdivision contains a certain subgraph that has to use that many
colours. We generalize the class of subgraphs that every coloured subdivision
must contain to obtain a sharp inequality in the bound. Next, we use this bound
to obtain a new bound x,(T") > /logn where 7" is an arbitrary binary tree on n
vertices.

In the next chapter we study the complexity of computing the parity vertex
chromatic number. We start with applying the ideas of Cheilaris and Téth [5] to

prove that the problem of checking if a given colouring is a parity vertex colour-
ing is coNP-complete. Next, we design an exponential algorithm computing the
parity vertex chromatic number that is based on generating all subsets of vertices
that lie on a subpath. Applying this algorithm we verified that x,(Q5) > 12
where @5 is the hypercube of dimension 5. Then we describe an algorithm check-
ing if a tree has a parity vertex colouring using k& colours that is exponential only
in k£ and thus runs in a polynomial time whenever the parameter & is bounded.

In the next chapter we formalize this in terms of parametrized complexity.
This theory was established by Downey and Fellows [9]. For more recent results,
we refer to [§]. It turns out that many problems that are polynomially solvable on
trees are efficiently solvable on a wider class of graphs, namely graphs of bounded
treewidth. We state the precise definition later, for now it suffices to say that the
treewidth is a parameter of a graph that express how “close” the graph is to a
tree. The most interesting theoretical result for graphs of bounded treewidth is
Courcelle’s theorem [7], [§] stating that every graph property definable in a certain
logic can be decided in linear time on graphs of bounded treewidth. We use this
theorem to prove that checking if a graph G has parity vertex colouring using k
colours can be done in polynomial time whenever k and the treewidth of G are
bounded. Since the algorithm guaranteed by Courcelle’s theorem is not easily
implementable, we consequently design our own algorithm solving the problem
based on the standard dynamic programming on a tree decomposition [g].

In the last chapter we discuss the relevance of presented results to other colour-
ings. Specifically, we consider extending our results to conflict free, unique max-
imum, and parity edge colourings.

Preliminaries

Throughout the paper we consider all graphs to be finite, undirected and simple.
We use the standard graph notation. For example V(G), E(G) for the set of
vertices and edges of a graph G, respectively, and G — v for a graph obtained
from G by deleting vertex v and all of its incident edges. By a colouring we always
mean a colouring with integers. Thus the colours are always linearly ordered. We
start with defining the main objects of our interest: a parity vertex colouring, a
parity path, and a parity vector.

Definition 1. Let G be a graph, ¢ be a colouring of vertices of G with k colours,
V' be a subset of vertices of G, and 'V be a family of disjoint subsets of vertices of
G. A parity vector of V (denoted as pv(V)) is an element of {0,1}* where the
i-th coordinate equals the parity of the number of vertices in V' coloured by the
i-th colour of c. A parity vector of V (denoted as pv(V)) is an element of {0, 1}*
defined as pv(UV).

For a single vertex the parity vector is defined analogously. In addition to
standard algebra on parity vectors, we define an operation that adds one parity
vector to the set of parity vectors and an operation that combines two sets of
parity vectors together.

Definition 2. Let k be a positive integer, S be a set of parity vectors of di-
mension k and v be a parity vector of dimension k. We define a commutative
operation S & v as follows.

Sev=J(s+v)
seS
where + is the standard plus operation adding two elements of {0, 1}.
Additionally, let P be a set of parity vectors of dimension k. We define a
commutative operation S & P as follows.

SoP=|]J(soP)

seS

Definition 3. Let G be a graph, ¢ be a colouring of V(G), and P be a non-empty
path in G. The path P is called a parity path if pv(P) is the zero parity vector.

Note that every parity path has odd length (even number of vertices).

Definition 4. Let G be a graph. A parity vertex colouring of G' is a colouring
of vertices of G such that there exists no parity path in GG. The parity vertex
chromatic number of G (denoted by x,(G)) is the minimal number of colours in
a parity vertex colouring of G.

For brevity we sometimes talk about parity vertex colourings just as colourings
or as proper colourings when it is clear from the context what type of colouring
we mean.

We use the standard notation P, for the path with n vertices (of length n—1),
K, for the complete graph on n vertices, and @),, for the hypercube of dimension n.
We recall definitions of some other types of graphs we use in the thesis.

4

Definition 5. A complete binary tree is a rooted binary tree in which all interior
nodes have two children and all leaves are on the same layer. A complete binary
tree with i layers is denoted by B;.

Definition 6. A binomial tree of order n (denoted by Bi,,) is a rooted tree defined
recursively.

1. Big = Ky with the only vertex as its root.

2. Forn > 0 the binomial tree Bi, is obtained by joining roots of two disjoint
copies of Bi,_1 by an edge and then taking the root of the first copy to be
the root of Bi,.

We use a slightly uncommon definition of separators.

Definition 7. Let G be a graph, A, B be subsets of vertices of G, and S be a
subset of AU B. We say that S separates A and B if the sets A\ S and B\ S
are empty or they are in distinct components of G — S.

Additionally, if AU B = G, we say that (A, B) is a separation of G with the
separator S.

Furthermore, we use log to denote the logarithm of base 2.

1. Bounds on the parity vertex
chromatic number

1.1 Properties of the parity chromatic number
of paths, cycles, and trees

In this section we start with introducing the parity vector argument, which we
use throughout the paper. To illustrate the argument, we first reprove the exact
value of the parity chromatic number of paths. It was already proven by Cheilaris
et al. [6] and Borowiecki et al. [3].

Lemma 1 ([3,6]). For everyn > 1, x,(P,) = |logn| + 1.

Proof. The upper bound is easily seen by induction. We colour the middle vertex
(or one of the middle vertices) by a unique colour, and we colour by induction
the two remaining paths, which have length at most %n This requires at most
|logn] + 1 colours.

Now we prove the lower bound. Consider any proper parity colouring of P,
with £ colours. Let Sy, ..., .S, be the subpaths of P, starting in the first endvertex
and having length 1,2,..., n, respectively. Suppose that two of them, say S;, S;
for some ¢ > j, have the same parity vector, so pv(S;) = pv(S;). It follows that
the parity vector of the subpath P; \ P; is the zero vector. Thus there exists a
parity path, a contradiction. Therefore the parity vector of every S; is unique.

There are only 2% different parity vectors of length k, and no path S; can
have the zero parity vector. Hence n < 2F — 1. For positive integers n, k this is
equivalent to [logn| +1 < k. O

We use a similar argument to find the parity vertex chromatic number of
cycles.

Lemma 2. For every n > 3, x,(C,,) = [logn] + 1.

Proof. To see the upper bound, we colour n — 1 consecutive vertices on a cycle
optimally as on a path, and we colour the remaining vertex with a new colour.
This colouring uses exactly |log(n —1)] + 1+ 1 colours. By integrality this is
equal to [logn] + 1.

To prove the lower bound, consider any proper parity colouring of C), using

k colours. Denote the vertices of the cycle in order of traversal by vy,..., v,.
For every i € [n], denote the subpath on the first ¢ vertices by S;. Next, for
every i € {1,...,n — 1}, denote by S;,,, the subpath on vertices v, _;11,...,p.

Observe that all subpaths S; are different and that the symmetric difference of
any two of them (i.e. we consider only vertices contained in exactly one of them)
is also a subpath of the cycle. Thus, by the same argument as in the previous
proof, parity vectors of all 2n — 1 paths S; must be different and non-zero. Hence
2n — 1 < 28 — 1. Therefore k > [logn] + 1. O

The upper bound for paths can also be easily extended to trees.

Lemma 3. For everyn > 1 and every tree T,, on n vertices, x,(T,,) < |logn]+1.

6

Figure 1.1: A parity vertex colouring of B4 with three colours.

Proof. We show that a colouring with that many colours exists. We define the
colouring inductively. If n is equal to 1, then we colour 7}, by one colour. For
other n we find a vertex whose deletion will split the graph in parts of size at
most |5]. It is well known that such vertex exists. Then we colour these parts
by induction, so with at most |log ([%])] 4 1 colours (each with the same set of
colours). Since |log (| %])] +1 = |logn|, we can use the one remaining colour to
colour the splitting vertex. Every path connecting two different parts of the tree,
or the splitting vertex, is crossing the splitting vertex. Thus it is not a parity
path. Every other paths is entirely in one part of the graph. Thus, by induction,
it is not a parity path. O

The parity chromatic number is monotone with respect to subgraphs because
the set of all paths in a subgraph is a subset of the set of all paths in the original
graph. It is only logical to ask whether the parity chromatic number is also
monotone with respect to minors. We give a negative answer to this question by
providing a counterexample.

We first determine the parity chromatic number of certain trees that we will
need later in the proof. Recall that B, denote the complete binary tree with n
layers.

Lemma 4. y,(Bs) =3 .

Proof. The parity chromatic number of By is at least 3 because B, contains P;
as a subgraph. And since there exists a parity vertex colouring with 3 colours, as
you can see on Figure [L.1], we have x,(By) = 3. O

We denote the graph consisting of two copies of Bs connected by their roots
as T33. We refer to these two rooted subtrees as the first and the second main
subtree.

Lemma 5. x,(T53) =4

Proof. First of all, there exists a proper colouring with 4 colours, as you can see
on Figure 1.2l And since the tree T35 contains Fy as a subgraph, it is sufficient
to prove that there is no proper parity colouring with 3 colours.

Suppose, for the contradiction, that a proper parity colouring with 3 colours
exists. First assume that in both main subtrees there exists a leaf that has
different colour than the root of the respective subtree. In both subtrees the
vertex between the respective root and the leaf has a different colour than both
of them. Thus in both subtrees there exists a path starting in the root and using
every colour once. But this contradicts our assumption because the roots are
connected. Thus there exists a parity path.

Now assume that one of the main subtrees, without a loss of generality the first
one, has the root and all its leaves coloured with one colour. The only possibility
to properly complete the parity colouring of this subtree is to colour the two
remaining vertices with one of the remaining colours; each with a different one.
No matter what colour the root of the second subtree has, there always exists a
parity path starting in this root and ending in the first subtree. Therefore our
assumption was false and there is no proper colouring using 3 colours. O

1 1 1 1

Figure 1.2: A parity vertex colouring of T 3 with four colours.

Theorem 6. The parity vertexr chromatic number is not monotone with respect
to minors.

Proof. Observe that T3 3 is a minor of By (it suffices to contract one of the edges
incident to the root). The rest immediately follows from Lemmas[fland[f] O

1.2 Lower bound on the parity chromatic num-
ber of subdivisions of complete binary trees

In this subsection we first present a result of Cheilaris et al. [6] about the parity
chromatic number of subdivisions of complete binary trees. In the next section
we suggest a way to improve it (we actually prove a slightly stronger version of
the theorem).

Definition 8. A graph H is a subdivision of a graph G if H is obtained from G by
replacing some edges with paths. We call the original vertices of H the branched
vertices.

Definition 9. Let T and T" be rooted trees. We say that T" is a compatible subtree
of T if T" is a subtree of T and the root of T" is the closest vertex of T to the
root of T.

We sometimes use the expression a compatible subgraph instead of a compat-
ible subtree when we want to emphasize that it is a subgraph (but it will always
be a subgraph of some tree).

Theorem 7 ([6]). For every n > 1 and every subdivision B* of B, it holds that

Xp(B*) > Vn.

We first prove that a colouring of B* that has all branched vertices monochro-
matic cannot use only few colours. Then we show that every colouring of B* either
uses too many colours or contains a large subdivision of By, as a compatible sub-
graph with branched vertices coloured monochromatically. This will yield the
desired bound.

Lemma 8. Forn > 1 and for every subdivision B* of B,, that has all branched
vertices coloured with one colour, x,(B*) > n.

Proof. Let ® be a proper parity colouring of B* with k colours such that all
branched vertices are coloured with one colour. Let M be the set of all subpaths
of B* starting in the root and ending in the branched vertices. There are exactly
2™ — 1 such subpaths.

Suppose that two distinct paths Cy, Cy from M have the same parity vector.
Let v be the lowest common vertex of C7,Cs. It exists because they have at
least one vertex, the root, in common. The symmetric difference of C; and Cy
together with the vertex v composes a subpath in B*. Denote this subpath by C.
Thus pv(C) = pv(Ch) + pv(Cs) + pv(v) = pv(v). Moreover, C is of length at
least 1 (it has at least 2 vertices) and its endvertices as well as the vertex v are
branched vertices, so they have the same colour. Thus the path obtained from C
by deleting one of its endvertices is a parity path, a contradiction. Therefore all
of the paths in M have different parity vectors.

Since there are only 2F — 1 different non-zero parity vectors, it follows that
2k — 1> 2" — 1. Therefore k > n. L]

Lemma 9 ([6]). Let k,n > 1 and B* be the subdivision of B, properly coloured
with colours 1,..., k. There exists a vector (ay,...,a;) such that Y% a; > n and
for every 1, 1 < i < k, there exists a compatible subgraph G; of B* such that G;
is a subdivision of B,, and all branched vertices of G; are coloured with colour .

Proof. We proceed by induction on n. For n = 1 the tree consists of only one
vertex. Let p denote its colour. We set a; := 1, G; := B* if ¢ = p, and we set
a; =0, G; := (0,0) otherwise. Obviously > , a; > 1 and every G; satisfies the
required properties.

For n > 1 let v be the root of B* and p its colour. Both of the subtrees
of v contain a subdivision of B, _; as a compatible subgraph. Call these sub-
divisions X, Y, respectively. From the induction hypothesis we get a vector
(x1,...,xx) with corresponding compatible subgraphs Xi,... X} of X such that
Zle x; > n—1, every graph X; is a subdivision of B,,, and all branched vertices
of every X; are coloured with 7. Similarly, we get (yi,...,yx) and Y7,..., Y} for Y.
Consider two possibilities:

1. For every ¢ it holds that x; = ;. In this case we set a; ;== x; + 1 for e = p
and a; := x; otherwise. Clearly, Zle a; > n. It remains to show that there

exist corresponding subgraphs G;.

If i # p, we set G; := X;. By induction hypothesis this is a compatible
subgraph of X, thus it is also a compatible subgraph of B*. The other
conditions for G; follows immediately by induction.

9

Finally, we set G, to be the following subtree of B*. If z, = 0, then let
G, have just one vertex v (recall that v is the root of B*), and it clearly
satisfies all conditions. Otherwise we set v to be the root of GG,. And we
connect X, and Y, by their roots to the vertex v by a path (in other words
we set G to be the minimal subtree of B* containing X,, Y, and v). In
this way we obtain a compatible subtree of B* that is also a subdivision
of B,, and has all its branched vertices coloured by p (branched vertices
of X,, Y, are coloured by p by induction hypothesis and the vertex v has
also the colour p).

2. There exists j such that z; # y;. We can assume that z; > y;. We set
a; == x;, G; = X; if ¢ = 7, and we set a; := y;, G; := Y; otherwise. By
induction hypothesis every G, is a subdivision of B,, and has its branched
vertices coloured by colour i. It is also a compatible subgraph of X or Y,
thus it is also a compatible subgraph of B*. Furthermore, by induction
hypothesis > | y; > n — 1. Hence

k

k k
ai=z+> i > 1+ yi>n,

i#]

and all conditions are satisfied.
O

Lemma 10. Let k,n > 1 and B* be the subdivision of B,,. Then every proper
colouring of B* with k colours contains a subdivison of the complete binary tree
with [3] layers as a compatible subgraph and with all branched vertices coloured
with one colour.

Proof. By Lemma @ there exists a vector (aq, ..., a;) such that Zle a; > n and
for every ¢ from {1,...,k} there exists a compatible subgraph G; of B* such that
G, is a subdivision of B,, and all branched vertices of G; are coloured by one
colour. By the pigeonhole principle there exists j such that a; > [#]. Thus G;
is the desired subgraph. O]

We are finally ready to prove Theorem [7}

Proof of Theorem[7. Consider a proper parity vertex colouring of B* with k
colours. By Lemma either £k > /n, and we are done, or B* contains a

subdivision of the complete binary tree with at least [%1 layers (so at least

V/n layers) with all branched vertices coloured by one colour as a compatible
subgraph. Hence by Lemma |8 we obtain k > /n anyway. O]

1.3 New sharp bound on the parity chromatic
number of subdivisions of complete binary
trees

Motivated by Lemma [§, we present a more general class of partially coloured
graphs that has a nice lower bound on its parity chromatic number. We use this
result to prove that Theorem [7| holds with a sharp inequality.

10

o ——o ¢o—o—9o
1 4
1 3 1
1
® .5
*—o 02 03 .1 02

Figure 1.3: An example of a graph from F (on the left) and a safflower obtained
from it (on the right). Edges of the stem of the safflower are blue. Main vertices
are red.

Definition 10. Let F be the family of all rooted trees consisting of a central
branch (a path from the root to some leaf) and at most one complete binary tree
attached to each vertex of this branch.

Let G be a properly coloured subdivision of some graph G' from F. We say that
G is a safflower if G has all its branched vertices of every attached subdivision
coloured with the same colour as the vertex of the central branch the subdivision
1s attached to. Furthermore, we use the following notation.

1. A stem of G is the path of G that is the subdivision of the central branch
of G'.

2. Main vertices of G are the vertices of the stem together with all original
vertices of G’

3. Num(QG) is the number of main vertices in G.

Ezxample 1.
(a) The tree on Figure (on the right) is a safflower.

(b) Every rooted complete binary tree can be viewed as one central branch (we
can choose any branch of the tree) with attached complete binary trees to
it. Therefore every properly coloured subdivision F' of a binary tree such
that F' has all branched vertices (the original vertices) monochromatic is
by definition a safflower. Furthermore, as stated previously, we can choose
any branch of the complete binary tree to be a central branch. Thus the
stem of the saflower F' can be any branch of F.

Note that main vertices of such safflower F' are exactly all branched vertices
of the subdivision together with all vertices of the stem. Therefore, if we
choose the longest branch of F' to be the stem then num(F) =2"—1—n+k
where n is the number of layers of the original complete binary tree and k
is the length of the longest branch of F'.

11

(c) If we are given a safflower, then if we prolong the stem in the endvertices
by attaching a path of new main vertices, we obtain another safflower (if
we label the new vertices so that the colouring remains proper). This is
indeed a safflower because we can prolong the central branch of the graph
the safflower is obtained from by attaching the same path.

Lemma 11. Every safflower F requires at least log(Num(F) 4+ 1) colours.

Proof. Let M be the set of subpaths of F' from the root to some main vertex
of F. Clearly |M| = Num(F). If Num(F') = 1, the lemma clearly holds. Thus
assume M| > 2.

Suppose that two distinct paths Cp, Cy from M have the same parity vector.
Let v be the lowest common vertex of C',Cs. Then the symetric difference of
(4 and Cy together with the vertex v compose a subpath (denote it by C') in F.
Thus pv(C') = pv(Ch) + pv(Csy) + pv(v) = pv(v). Moreover, one endvertex u of C
is either the vertex v or it is a branched vertex of a subdivision connected to v,
so it has the same colour as v. Therefore the path obtained from C' by deleting u
is a parity path (note that it is not empty). Since the colouring of F' is proper,
every path in M has a distinct parity vector.

Furthermore, none of the paths in M can have the zero parity vector, hence
the number of used colours is at least log,(num(F') + 1). O

Lemma [11] can be used to improve the lower bound on the parity chromatic
number of certain trees. The general idea is the same as in Theorem [/} Every
colouring of a graph either uses a large number of colours or it contains a large
safflower. Thus it also uses many colours. We give an example how to obtain a
slightly stronger version of Theorem [7]

Theorem 12. For every n > 2 and every subdivision B* of B, x,(B*) > \/n.

Proof. Consider any proper colouring of B*. Suppose, for a contradiction, that
it uses at most /n colours. By the same argument as in Theorem there
exists a subdivision of the complete binary tree with at least \/n layers and all
branched vertices coloured monochromatically as a compatible subgraph of B*.
By Example |l{(b)] it is also a safflower. By Example we can prolong its stem
to stretch from the root of B* to some leaf of B*. This saflower has at least n
levels, hence by Example m@‘ it has at least 2V® — 1 — \/n + n main vertices.
Therefore by Lemma [11| the safflower uses at least [log(2V™ — 1 — /n +n + 1)]
colours. For n > 2 this is clearly greater than y/n, hence we have obtained a
contradiction. Thus B* uses at least /n + 1 colours.]

1.4 Lower bound on the parity chromatic num-
ber of binary trees

In this section we use the lower bound on the parity chromatic number of subdivi-
sions of the complete binary trees to prove a lower bound on the parity chromatic
number of a general binary tree.

Theorem 13. For every binary tree B on n vertices, x,(B) > v/logn.

12

We show that every binary tree either contains a long path or it contains a
subdivision of a large binary tree. For this purpose, we estimate the maximum
number of vertices a binary tree can have when it has a bounded number of layers
and does not contain certain subdivisions.

Definition 11. For integersl,d > 0 let A(l,d) be the mazimal number n such that
there exists a binary tree on n vertices with at most | layers and not containing
a subdivision of Bgy1 as a compatible subgraph.

Claim 14. For every I > 0 it holds that A(l,0) = 0.

Proof. The tree B; is a single vertex, so any tree not containing By as a compatible
subgraph must be empty.]

Claim 15. For every d > 1> 0 it holds that A(l,d) = 2" — 1.

Proof. A binary tree with at most [layers can have at most 2! — 1 vertices. The
complete binary tree with [layers has this number of vertices and does not contain
a subdivision of By, for d > [. O

Lemma 16. For every l > d > 0 it holds that A(l,d) = A(l —1,d — 1) + A(l —
1,d) + 1.

Proof. Let B be a binary tree with at most [layers that does not contain a
subdivision of By,1 as a compatible subgraph. Let r be its root. Both child
subtrees of r, let us denote them by 77,75, have at most [— 1 layers. They
cannot both contain a subdivision of B; as a compatible subgraph. Otherwise
it would be possible to connect their roots through r to compose a subdivision
of By.1 as a compatible subgraph of B. Thus, without a loss of generality, 77 and
T, does not contain a subdivision of B;y; and By, respectively, as a compatible
subgraph. Hence |V(T1)| < A(l — 1,d) and |V (T3)| < A(l — 1,d — 1). Therefore
A(l,d) < A(l—-1,d—1)+ Al —1,d) + 1.

On the other hand let, 77 and T3 be trees with respectively A(l — 1,d) and
A(l — 1,d — 1) vertices, maximally { — 1 layers and not containing respectively
Bgi1 and B, as compatible subgraphs. When we connect their roots by a new

vertex, we obtain a new tree with at most [layers that does not contain By, as
a compatible subgraph. Hence A(l,d) > A(l—1,d— 1)+ A(l —1,d) + 1. O

Lemma 17. For every integers | and d such that |l > d > 0 it holds that

A(l,d) = zjjo l(2 ~1)- (f:;:i) + @ ~1. (1.1)

Proof. We prove it by induction on both [and d. First assume that d = 0. In
this case we need to prove that A(l,0) = (é) — 1. This is true by Claim
Now assume that [= d41. We need to prove that A(l,1—1) = 3/2} (20 — 1)+
[—1. We use induction on [to do it. For | = 2 we need to prove that A(2,1) = 2.
It holds because by Lemma [16{ we get A(2,1) = A(1,1) + A(1,0). And that is
equal to 2 by Claim [I5] and [I4] For [> 2 we use the Lemma the induction

13

hypothesis, and Claim [15| to obtain
AL -1) =Al-1L,I1-1)+A(l-1,1-2)+1
- _1+Z(2’—1) (I-1)—1+1
-1

=Y (2 -1)+i-1

7

I
o

Finally, assume that [— 1 > d > 0. By the induction hypothesis, A(l — 1, d)
and A(l —1,d — 1) satisfy (1.1)). Therefore by the Lemma [16| we see

All,d)=A(l-1,d)+A(l—-1,d—1)+1

e o (i) ()

Sl ()

2 G (R S)
+(27=1) 1+ <l;1> +<;:11> -1
S (e)
-5 [0 ()] (o)

]

The formula provided by Lemma [17| does not have a simple form. Instead, we
provide a simple upper bound.

Lemma 18. For [> d > 0 it holds that A(l,d) < [4.

Proof. In case | = d it easily follows from Claim [15]
Now assume that [> d. We apply Lemma [I7] In case d = 0 we see that
A(l,d) =0 < ° In case d = 1 we get A(l,d) = 1. In case d = 2 we get

=360 (7,7 () -
(22 - 1)+<l §>+<é)—1
(1-2) +<é> il

14

where the last inequality holds because | > d = 2. In case d = 3 we get

A(z,d>=;[(2“1>'<zl:§:11>] +<;> B
()0
:35—9+< K >+<3>+6

roroP 3
<—4+—-+—--3<l
- 3+2+6

where we used [> d = 3. In case d > 3 we get

g(%—l)é(fjj) (2)_1
= (2'-1) z—d>+<d>_1
~):(3)

In the last step we used inequality <2d) . (é) < 1%, which clearly holds for [> d > 4.
In the second step we used the following well known Hockey-stick identity.

Proposition 1 (Hockey-stick identity). For every n > r > 0 it holds that
E”: i\ _ (n+1
—\r) \r+1)

Now we are finally ready to prove Theorem

Proof of Theorem[13 Let n > 2 and B be an arbitrary binary tree on n vertices

and let b = x,,(B). Lemmall]implies that B does not contain a path on 2° vertices

as a subgraph. Thus B has at most 2° layers. Theoremimplies that B does not

contain a subdivision of B2 as a subgraph, thuarticularly not as a compatible
8

b2—1 3
subgraph. Hence n < A(2°,b%—1). By Lemma [18{we see that n < (2”) < 20
Therefore b > +/logn.

1.5 Parity vertex colouring of ();

Borowiecki et al. [3] formulated the following conjecture.

Conjecture 1. [t holds that x,(Qa) = Fai2 where F; is the i-th Fibonacci number.

15

Figure 1.4: A parity vertex colouring of Q5 with 15 colours.

They provided a proof that it holds for d < 5. We tried to prove it for Q)s,
but in the end we were not even able to find a colouring with 13 colours. We also
believe that it does not exist and that we need at least 15 colours to colour Q5.
We also implemented the algorithm described in Section and tried to find a
colouring with 13 colours, or prove there is none. Unfortunately, we only manage
to show that there is no colouring using 12 colours. For 13 colours the running
time would be too long. We at least give the colouring using 15 colours.

Lemma 19. x,(Q5) < 15.

Proof. The colouring of Q5 using 15 colours is given on Figure[1.4] It is not easily
seen that it is a proper colouring. Thus we provide a short proof. There are 16
vertices of colour 1, two vertices of colour 2, two vertices of colour 3, and one
vertex of each colour between 4 and 15. Recall that every parity path has odd
length. Clearly, no two vertices with the same colour are adjacent. Thus there
is no parity path of length 1. Additionally, on every path of odd length there
are exactly half of the vertices coloured by 1. Thus every path of length 5 or
at least 9 contains either colour 1 odd number of times or it contains one of the
unique colours (the colours between 4 and 15), and so it is not a parity path. It
remains to check the paths on 4 and 8 vertices. A parity path on 4 vertices has
to contain either the pair of vertices coloured by 2 or the pair coloured by 3. But
the vertices in these pairs are at distance 4 from each other, so it is not possible.
A parity path on 8 vertices has to contain both pairs of vertices coloured by 2
and by 3. But the vertices coloured by 2 or 3 in the left part of the hypercube
are at distance 4 from both of the vertices coloured by 2 or 3 on the right side.
Thus the smallest length of a path connecting all of the vertices coloured by 2
and 3 is 8. Therefore there is no parity path. O

16

2. Complexity of computing the
parity vertex chromatic number

In this chapter we present a straightforward method for computing the parity
chromatic number of general graphs. We also design a more efficient method to
compute the parity chromatic number of trees.

But at first we show that computing the parity vertex chromatic number of
graphs is hard. In particular, we show that even verifying that a colouring of a
graph is proper is coNP-complete.

2.1 coNP - completeness

Theorem 20. Given a graph and its colouring, it is coNP-complete to decide
whether the parity vertex colouring is proper.

The following proof is a slight variation of a proof from Cheilaris and T6th [5],
where the authors proved the same statement about a different colouring (conflict
free colouring, i.e. a colouring is proper if on every path exists a unique colour).
For the specially coloured graphs used in the proof, these colouring are identical.

Proof. We need to prove that the problem is coNP-hard and that it lies in coNP. In
other words we have to prove that this problem is at least as hard as any problem
in coNP, and that given an appropriate certificate we can verify in polynomial
time that an instance of this problem is not properly coloured. We start with the
first part.

We show that the complement of the Hamiltonian path problem can be re-
duced to our problem. That is, given a graph G we construct in polynomial time
a graph G* with colouring C'ol of its vertices such that G has no Hamiltonian
path if and only if C'ol is proper.

Let {vy,...,v,} be the vertex set of G. We define G* to consist of two iso-

morphic copies G’ and G” of G with vertex sets {v},..., v} and {v{,... v},

respectively. Additionally, G* contains for every pair of vertices v}, v/ a path
/ "

.Pi = (Uz'7 Ui,l? . 7Ui,z’—17 Ui,i+17 e 7Ui,n7 Ui) Where UZ'71, . 7Ui,z'—17 Ui,i—l—l; e 7Ui,n are

new vertices. We now define the colouring Col. For every i € [n] we set Col(v]) =
Col(v]) =i and for everyn > i > j > 1 weset Col(v; ;) = Col(v;;) = (i—1)-n+j.
Observe that every colour is used exactly twice and that inner vertices of every P;
are coloured with distinct colours. Furthermore, every two distinct paths B, P;
use the same colour on exactly one pair of inner vertices, namely v; ; and v;;.

Let G contain some Hamiltonian path, say F' = (vy,vg,...,v,). It follows
that G* also contains a Hamiltonian path obtained from F' by replacing every
vertex v; by the path P; or its reverse in a way that the consecutive paths can
be connected by an edge of G’ or G” (so the end of the first path and the start
of the second path lies in the same copy of G). Since every colour in G* is used
exactly twice, it follows that this path is a parity path and so the colouring C'ol
is not proper.

On the other hand, let C'ol not be a proper parity colouring and let F' be a
parity path of G*. We show that G* and consequently GG contains a Hamiltonian

17

path. Since F' is a parity path, every colour is used even number of times on
F'. Since every colour is used exactly twice in G*, it follows that every colour is
used twice or zero times on F'. Recall that inner vertices of every path P; have
different colours. Thus F’ must contain some vertex of G’ or G”, say v.. Vertex v/
is the only other vertex using the same colour as v;. Hence F' contains both v/
and v]. Therefore it must contain an entire P; for some j (subgraphs G’, G" are
connected only by these paths). Since exactly one colour of every other P, is
used also on Pj, it follows that [’ contains vertices from all F;. Therefore F' also
contains all vertices of both G’, G”.

Assume, for now, that F' is not Hamiltonian. Observe that if it does not
contain all vertices of some P;, then one of its end vertices must be on that path.
Thus F' contains all paths P;, except for at most two exceptions Py, F,. Suppose
that it does not contain two different vertices of Py, say vg;, vg;. At least one
of indices 7, j is different from [, say i. Hence F contains the entire P; and
consequently also v; ;. Therefore it must contain also vy ;, a contradiction. We
can use the same argumentation for P, and so it follows that F' does not contain
at most one vertex of P, and at most one vertex of P,. It easily follows that we
can extend F' by these vertices and obtain a Hamiltonian path.

So there always exists a Hamiltonian path in G*, say the path F. Observe
that in every Hamiltonian path of G* with end vertices in G’ U G”, paths P; are
part of the Hamiltonian path. So in this case we would obtain a Hamiltonian
path in the graph G by contracting paths P;. We now show that we can modify
F to find such Hamiltonian path in G*. If the end vertices of F' are adjacent
we obtained a Hamiltonian cycle. Thus we can split it in between some pair of
vertices vj, v} and consequently find a Hamiltonian path in G. Otherwise, let z,y
be end vertices of F'. The vertex x must be adjacent to some vertex of G' U G”,
say v) (otherwise one of its neighbours would not be on the Hamiltonian path).
So the Hamiltonian path looks like this (z,..., v}, v}, v}, ...y). We can reconnect

)]7 77
it to obtain a Hamiltonian path (v},...,z,v;,vy,...y). In a similar way we can

YA)

reconnect y and its neighbour to obtain a Hamiltonian path with end vertices in
G'UG", and consequently a Hamiltonian path in G.

It remains to prove that the problem is in coNP. If the given certificate is a
parity path, then we can easily verify in linear time that this path really contains
every colour even number of times.

]

2.2 Brute-force approach

We design an algorithm FindColouring (G, k) that for a given graph G and an
integer k decides whether there exists a proper parity colouring with &k colours. In
addition, if a proper colouring exists, the algorithm returns one. We can always
assume k < |V(G)|, otherwise we could colour every vertex uniquely. We have to
tackle two problems.

First, the colouring must be proper. L.e. every path must use some colour odd
number of times. We could go through all possible paths, but some paths can
have the same set of vertices, and so the condition for them is the same. Thus,
we will instead construct a family of all subsets of vertices of G such that for

18

each subset in this family there exists a subpath in G with exactly the same set
of vertices.

Our second problem is the following. If the algorithm outputs NO, we have
to be sure that every possible colouring of GG is not proper. For this purpose, we
define some ordering of vertices and then we recursively try all possible colour-
ings. In particular, in ¢-th recursion we try all colours of i-th vertex and call
the algorithm recursively on remaining vertices. To make it more effective, we
observe that even partial colourings of G must satisfy some conditions in order to
be admissible for extending into proper parity colourings. So, during the process
of colouring we discard bad partial colourings. For that purpose we use the family
of subsets of vertices discussed above.

Now we proceed to describing the algorithm in detail and more formally.

Definition 12. Let G be a graph. A subset S of its vertices is called path-induced
if there exists a subpath P of G such that V(P) = S.

First, we design an algorithm Walkable(G) finding all path-induced subsets
of a graph G.

We actually first find a set of all pairs (E, S) such that there exists a subpath P
in G such that V(P) = S and the set E' is exactly the set of endpoints of P. We
call these pairs path pairs. Its easy to see that for each such path pair, the set S
is path-induced. On the other hand, for every path-induced set S there exists a
set F such that (F,S) is a path pair.

We proceed inductively on the size of S. In the i-th step we compute a set M;
of all path pairs (F,S) such that |S| = i. In the beginning we set M; to be the
set of all ({v}, {v}) for every vertex v.

To construct the set M;; we go through all sets (£, S) from M;. For every
v from E and every neigbour u of v that is not in S, we construct a pair (£’, S")
where S’ := SU{u} and E' := EU{u} if |E| =1, and E' := E\ {v} U {u}
otherwise. We add this pair to M, ; unless it is already there.

After computing all M;’s, the set of all path pairs of G is U; M;, as we will
prove in the following lemma. Let us denote this union by M. Then it is clear
that the family of all walkable subsets of V(G) is the set of all S such that there
exists a set F with (E,S) € M. So to compute all path-induced subsets of V' (G),
it suffices to go through all pairs (F,S) from M and accumulate all distinct S.

We will prove that the set M computed by the algorithm is really the set of
all path pairs in GG. That proves the correctness of the algorithm.

Lemma 21. The algorithm Walkable(G) computes the set M of all path pairs
of G, and consequently return the set of all path-induced subsets.

Proof. Suppose that M (the set of path pairs computed by the algorithm) is
not the set of all path pairs in G. Recall that we compute M as a union
of all M; where M, should be a set of all path pairs (F,S) of G such that
|S| = i. Let My be the first such set computed wrongly. From the algorithm
it is clear that M contains only path pairs belonging to Mj. Thus, there
must be some pair missing. Let (E,S) be a path pair missing in M. Let
S =A{c,...,cx}. And let C' = (cq,...,¢) be one of the corresponding sub-
paths of G. If k = 1 then C = (¢;) and so (E,S) = ({e1},{c1}), but this pair
is contained in M, a contradiction. Therefore k > 2. Since M), is the first set

19

computed wrongly and C” := (¢y,...,cx_1) is also a subpath of G, it follows that
(E",S") = ({e1,c6-1},{c1, .. ce—1}) is in M, specifically it is in My_;. Since
{ck_1, ¢} is an edge of G and ¢ is not in S’ the algorithm added pair (F,S5)
to M}, during processing the pair (E’,S"). That contradicts our assumption and
thus the set M is indeed the set of all path pairs of GG. Since every path-induced
subset is a part of some path pair and every path pair contains a path-induced
subset, it follows that the accumulated set returned by the algorithm is indeed
the set of all path-induced subsets of G. n

We give a pseudocode of this algorithm. We now analyse the time complexity
of the algorithm.

1 Algorithm Walkable(G)
Input : A graph G
Output: A family of all path-induced subsets of vertices of G

2 M, + 0

3 foreach v € V(G) do

4 ‘ My < My U ({v}, {v})

5 for i = 2 to n do

6 M;

7 foreach (E,S) € M;_, do

8 foreach v € E do

9 foreach u € N(v) do

10 if w ¢ S then

11 S SU{u}

12 if i=1 then

13 | E + EuU{u}

14 else

15 ‘ E' «— E\{v}U{u}
16 M; < M; U{(E",5")}
17 M + U, M;
18 Res < ()
19 foreach (E,S) € M do

20 | Res < ResU{S}
21 return Res

Algorithm 1: An algorithm for computing all path-induced subsets of a
graph G.

Theorem 22. The algorithm Walkable(G) runs in time n°W - 2" where n is
the number of vertices of the input graph G.

Proof. There are at most n? - 2" distinct path pairs in total. The size of each
path pair is in O(n). The algorithm gradually compute sets M; of path pairs.
To compute M; it goes through M; ; and for every path pair there compute in
polynomial time some path pairs from M;. The only operation for each path pair
possibly running in a time not polynomial with n is checking if some M; contains
some element, but using space n?-2", or hashing, it can be done in constant time.
Thus the algorithm runs in n°®) - 2" time. [

20

We proceed to design the algorithm FindColouring(G,k). We already have
an algorithm generating all path-induced subsets. Thus in order to check if
Xp(G) < k, we could easily try all possible colourings and check if all path-
induced subsets are properly coloured. We present a heuristics improving this
approach.

Firstly we choose some ordering o of vertices in which we colour them. Later
we discuss some good choices of the ordering.

Next, we arrange walkable subsets to groups labelled by vertices. A group
with label v (denote it by M[v]) will contain all walkable subsets S of vertices
such that v € S and all vertices of S are before v in the ordering o.

Finally we colour vertices of GG in the order of o, trying all possible colours
for every vertex. When we colour the vertex v, we check whether there exists a
path-induced subset in M{v] that is a parity subset. If it is so, the colouring is
bad and so we proceed directly to the next colour of v, or alternatively to the
previous vertex, if we have already ran out of colours for v. If it is not, it means
there is no parity subset amongst subsets from M[v]. So we can proceed to the
next vertex. When we colour the last vertex v and check that there is no parity
subset in M [v], we know that there is no parity subset in Mu| for any vertex w.
Thus we obtain a proper colouring.

We can also improve the algorithm a bit when we realize that we can permute
colours. So when we use colours {1,...,k}, we can assume that the colour i is
the ¢-th used colour in the ordering ¢. In particular, first vertex will always have
the colour 1. The asymptotic complexity remains the same.

We give a simple pseudocode describing this colouring process.

Theorem 23. The running time of the algorithm FindColouring (G ,k) is n* -
nPW . 2" in the worst case where n is the number of vertices of the input graph

G.

Proof. The algorithm constructs walkable subsets in time n®® . 2", To rearrange

them into sets M according to latest vertex in o, it suffices to go through them
and always find the latest vertex. We can do it in n°®" . 2" time. Then the
algorithm colours vertices of G. At worst the colour of the last vertex always
spoils the colouring. So, for every possible colouring the algortihm checks parity
vectors of almost all path-induced subsets. There are n* colouring. Checking if a
parity vector of a walkable subset uses some colour odd number of times can be
easily implemented in linear time with the size of the subset. So the algorithm
needs at worst n* - n®M . 2" time. O

So far we have not defined how the ordering ¢ should look like. And we do not
have any clear answer for that. Intuitively, we want to find out that a colouring is
bad as soon as possible, thus a good heuristic seems to be to maximize the number
of walkable subsets among the first £ vertices in the ordering for small k. For
certain classes of graphs, good ordering can speed up the algorithm significantly.

We have implemented this algorithm with several hypercube specific improve-
ments, trying to disprove Conjecture (1| by showing that x,(Q5) > 13. But it was
feasible only for at most 12 colours. For 13 colours the running time was to high.

21

[uny

Algorithm FindColouring(G,k)
Input : A graph G, an integer k

colouring exists
W + Walkable(G)
o < a permutation of V(G)
M < Sets of W sorted out according to their latest vertex in the
ordering o
Col <— an empty colouring
if FindColouringsubproc(1,0) then
‘ return Col
else
‘ return False

[)

© W g O O

10 FindColouringsubproc (v,mazxc)

integer maxc of maximal used colour so far
Output: If proper colouring exists it outputs True and it sets the

*/
11 | if v=|V(G)|+ 1 then
12 ‘ return True
13 Actvertex < o|v]
14 for : =1 to maxc + 1 do
15 if i=k+1 then // cannot use more than k colours
16 ‘ break
17 Col[Actvertex| =i ; // set a colour of the v-th vertex

/* Check the colouring of all subsets, where Actvertex is the

even number of times

18 Badcolouring < False

19 foreach X € M|[Actvertex]| do
20 if Isparitysubset(X) then
21 ‘ Badcolouring < True
22 if Badcolouring then

23 ‘ continue

/* Proceed to the next vertex

24 if FindColouringsubproc (v+1,maz(mazc,i)) then
25 ‘ return True
26 return False

Algorithm 2: An algorithm for deciding whether a graph G has a
parity vertex colouring using k colours.

22

Output: A proper parity vertex colouring of GG, or False if no such

Input : an index v (to ordering o) of the vertex to be processed, an

ordering to global variable C'ol, otherwise it outputs False.

/* If we have already checked all vertices, the colouring is proper.

last vertex. We omit the code of Isparitysubset(X) function,
because it has a straiforward implementation. It just goes

through vertices of X and checks that every colour is used

2.3 Algorithms for trees

In this section we design a completely different algorithm for computing the
parity chromatic number of trees. Instead of constructing path-induced subsets
we use dynamic programming on the tree structure. Before we describe the final
algorithm, we first solve an easier problem of deciding whether a given colouring
is proper.

2.3.1 Verifying the correctness of a colouring

For a given tree T', an integer k, and a colouring ¢ : V(G) — {1...k} we describe
an algorithm checking whether the colouring c is proper.

First we root 1" in some vertex r. Note that we use notation T, for the subtree
of T rooted in v and containing all descendants of v. We have to check whether
there exists a parity path. We proceed by dynamic programming on the tree
structure starting from leaves. For every node v we compute the set M (v) of all
parity vectors of paths in T, starting in v. Moreover, in every node v we check
whether there is a parity subpath in 7T, going through v. In this way we check all
subpaths of T" during the algorithm. Therefore after running the algorithm we
know if the colouring is proper. We now describe these procedures for leaves and
inner vertices separately.

1. Let v be a leaf of T. We set M (v) to contain only the parity vector of the
colour ¢(v) because there is only one path in 7T, that starts in v: the path
consisting of only the vertex v. This path is the only path in 7,, and it is
not a parity path.

2. Let v be an inner vertex with sons ug,...,u,,. Clearly, every path in T,
starting in v has either length 1 or continues to one of the sons of v. On
the hand, for every son u; of v, a path in T,,; starting in u; can be extended
by v to a path in T, starting in v. Thus,

m

M(v) = po(v) U |J (M (u;) ® pu(v)) .

i=1

Recall that M (u;) @ pv(v) means the set obtained from M (u;) by adding
the parity vector pv(v) to each of its elements.

Every path in T, going through v can be split into three parts; to the
vertex v and to two paths Py, P, contained in respectively T,,, T, for 1 < j
and starting in w;, u;, respectively. These paths can also be empty. On
the other hand, every such parts compose a path in 7, going through v.
Therefore we check whether some distinct M (u;), M (u;) contain two parity
vectors differing only in the colour ¢(v), or if one of them contains the parity
vector of the colour ¢(v). If so, then there is a parity path. Otherwise there
is no parity path in 7, going though v.

With a straightforward implementation of this algorithm we get the following
theorem.

23

Theorem 24. For a given tree T on n vertices, an integer k, and a colouring
c:V(G) = {1...k}, there is an algorithm deciding whether the colouring c is a
proper parity colouring in time nfW . 20(k),

Proof. We prove that the algorithm we discussed above has this time complexity.
In every node we remember a set of parity vectors of dimension £, thus at most
2% values. The set operations describe above can easily be implemented in time

polynomial with the size of the sets and the size of the tree. Thus it runs in time
nO) . 90(k) [

Let us note that with clever implementation of this algorithm we can obtain
a running time O(n-2*%) . Furthermore, by Lemma , for every tree on n vertices
there exists a proper parity colouring with at most logn+1 colours. Observe that
for such k this algorithm runs in polynomial time with respect to the size of the
tree. Thus with clever implementation we would obtain a quadratic algorithm.

2.3.2 Computing the parity chromatic number of trees

For a given tree T" with n nodes and an integer k we give an algorithm deciding
whether there exists a proper parity colouring of 7" using colours {1,...,k}. By
using the above algorithm, we could easily try all possible colourings and check if
they are proper. But it would be inefficient. Instead, we use a similar approach
as in the previous algorithm; i.e. applying dynamic programming. We start with
simplifying the notation.

Definition 13. For every tree T' with a root v and for every colouring ¢ of vertices
of T', we call the set of all parity vectors of all paths starting in v in the tree T
coloured by ¢ a parity path set of T' corresponding to the colouring c.

Firstly, we root T in an arbitrary vertex r. We proceed inductively on the
tree structure. For every node v we compute the family F'(v) of all distinct parity
path sets corresponding to some proper colouring of T,. Therefore, F(r) is non-
empty if and only if there exists a proper parity colouring of 7. Observe that
one colouring of T;, unambiguously determines one parity path set of T, but one
parity path set of T, can correspond to more colourings of T;,. We show how to
compute F(v) for every node.

Let v be a leaf of T. The subtree T}, consists of only one vertex v. We can
colour the vertex v with k colours. Thus there are only k different colourings of
T,. It is clear that they are all proper. Therefore F'(v) = U;e{{ei}} where e; is
the parity vector corresponding to the colour .

Let v be an inner vertex of T" and u, ..., u,, be its sons. For each son u;, we
have already computed the family F'(u;) of all parity path sets corresponding to
some proper colouring of 7,,,. Observe that the subtrees 7T;,, are disjoint, and so
their colourings are also disjoint. Thus every set of representatives from families
F(u;) together with the colour of v unambiguously determines one parity path
set of T, (every corresponding colouring can be obtained by combining colourings
corresponding to the representatives of each F'(u;) and the colour of v). Therefore
for every colour of v, we could go through all possible sets of representatives of
families F'(u;) and compute the corresponding parity path set of T,. We could
check if it corresponds to a proper colouring, and possibly add it to F'(v). But

24

every vertex can have many sons. Thus it would be inefficient. Instead, we
build the family F'(v) step by step, always taking into account more and more
sons of v. More precisely, for every colour ¢ we inductively compute families
Fi(v,e), ..., Fn(v,c) where Fj(v,c) is the family of all distinct parity path sets
of the rooted subtree T} := T, — {V (Ty..,), - - ., V(Tu,)} corresponding to some
proper colourings of this subtree that use the colour ¢ on the vertex v. By
definition, F'(v) = Ueepy Fin(v, ¢).
We first show that,

F(v,ci= U Kpe(v)} U (S@po(v))].

SeF (u1)
pv(v)¢sS

The subtree T' consists of the root v with only one son u; (and the whole Ty,,).
For every parity path set of T)! corresponding to some proper parity colouring,
there exists a parity path set of T, corresponding to the same proper colouring
(but without the vertex v). Therefore every parity path set from Fij(v,c) is an
extension of some parity path set from F(u;) (the extension depends solely on
the colour ¢ of v). On the other hand, given a parity path set S from F(u,)
together with the colour of v, we can easily compute the parity path set P of
T! corresponding to some colouring, simply by adding the parity vector of the
colour ¢ to every parity vector of S as well as to the zero parity vector (to add
a vector of the path consisting of only v). The corresponding colouring is proper
on T,, and uses the colour ¢ on v, thus it is proper on T)' if and only if paths
starting in v are not parity paths. Hence the colouring is proper if and only if
P does not contain the zero parity vector or equivalently if S does not contain
pv(v). Therefore the formula is correct.

Now, we show how to compute F;(v, ¢) for every colour ¢ and an integer i > 2,
under the assumption that we have already computed F; i(v,¢). In particular,
we show that

Fv,e)i= |J [(Sa2®pu(v))USy].
So€F (u;)
S1€EF;_1(v,c)
51NSo=0

Observe that T°~! and T,, are disjoint and together compose T?. Recall that
parity path sets of T} contain parity vectors of paths of this tree starting in v.
These paths are either entirely in 77! or, when we delete their first vertex, they
are entirely in T, and start in u;. Therefore every parity path set of 7" can be
computed as a union of some parity path set of T/~! and the parity path set
obtained from some parity path set of 7, by adding the parity vector of the
colour ¢ to all of its vectors. On the other hand, each such union yields parity
path set of T!. Therefore it remains to decide what pairs of parity path sets
of Ti~! and T,, can be combined together so that the ensuing parity path set
corresponds to some proper colouring.

Let S; be a parity path set of T/~! corresponding to some proper colouring of
Ti=1, and Sy be a parity path set of T;,, corresponding to some proper colouring
of T,.. And let S be the parity path set of T composed from these two, so
corresponding to the combined colouring. Since the partial colourings on 7!
and T,, are proper, there are no parity paths in these subgraphs. So only the

25

paths that contain the edge (v,u;) can be parity paths. But these paths can be
split in an edge (v,u;) into two paths. One in T?~! starting in v and one in T,,,
starting in u;. And conversely, every such pair of paths compose a path in T"
going through (v,u;). These pairs of paths are exactly the paths having their
respective parity vectors in S; and Sy respectively. Thus there exists a parity
path in S if and only if there exists some parity vector contained in both S; and
Ss. Therefore the formula is correct.

Theorem 25. For a given tree T' on n vertices and an integer k there is an algo-
rithm deciding whether there exists proper parity colouring of T using k colours
in time n - 202

Proof. We prove that the above algorithm, which solves this problem, has the
desired time complexity. In every node v we remember the family F'(v) of elements
from the power set of parity vectors of dimension k. There are at most 22"
distinct elements. In order to construct the set F(v) for an inner node v with
SONS U1, . . ., Upy, we first need to construct the sets Fj(v,c). The complexity of
operations with these sets depends on the representation of these sets, for our
purposes it suffices that all of them run in a polynomial time with the size of
these sets. Similarly it is easy to see that the formulas given above for computing
these sets can be implemented in polynomial time with the size of these sets.
We can charge the son wu; for constructing sets Fj(v,c) for every c. In this
way we charge every son for constructing k sets. Since every vertex is a son of at
most one parent, we construct & - n such sets in total. Therefore the total time
complexity of the algorithm is in n - 20",]

26

3. Algorithms for graphs with
bounded treewidth

In the previous chapter we have designed several algorithms, we estimated their
runtime, and we claimed that they are in some sense good. We now formalize
this in terms of the parametrized complexity. We use results and definitions of
Cygan et al. [§] and Courcelle and Engelfriet [7].

The main result of this chapter is that the problem of computing the parity
chromatic number of graphs is fixed parameter tractable with respect to the
treewidth of the graph together with the number of colours. We give two proofs.
The first by using Courcelle’s theorem, the second by designing a fixed-parameter
algorithm solving the problem.

3.1 Introduction to parametrized complexity

Let us first give a name to the main problem we are dealing with.

Definition 14. We call the problem of deciding whether the graph G has a parity
vertex colouring with k colours ODDCOLOURING(G,k).

In the problem ODDCOLOURING(G,k) the input is not only the graph but
also a parameter, the integer k. We give a rigorous definition what a parametrized
problem is.

Definition 15. A parametrized problem is a language L C ¥* x N where ¥ is a
fized, finite alphabet and d is a positive integer. For an instance (z,k) € ¥* x N9,
elements of k are called parameters.

For example ODDCOLOURING(G,k) is a parametrized problem. The graph
GG can be easily encoded in some alphabet ¥ and £ is the only parameter.

What is important is that the complexity of algorithms solving these problems
is sometimes not dependent only on the size of the input, but also on the param-
eters. For example, for a bounded size of parameters these algorithms can run in
polynomial time. To capture this property we use the following terminology.

Definition 16. A parametrized problem L C ¥* x N is called fixed-parameter
tractable (FPT) if there exists an algorithm A (called a fized-parameter algo-
rithm), a computable functio f : N?® = N, and a constant ¢ such that given
(z,k) € ¥* x N¢ the algorithm A correctly decides whether (z,k) € L in time
bounded by f(k) - |(x,k)|°. The complexity class containing all fized-parameter
tractable problems is called FPT.

For example, by Theorem 25 ODDCOLOURING(G,k) is solvable in time
n - 202" for trees. Thus the problem ODDCOLOURING(G,k) for trees is FPT
with respect to k. Therefore if k is constant, the problem is solvable in polynomial
time.

IEvery function we are using is computable. Informally, computable functions are functions
that can be calculated by Turing machines.

27

c e oa)
h I

Figure 3.1: A tree with its tree decomposition.

We now proceed to defining a treewidth, the parameter of our main interest.
For that we first need to define tree decompositions of graphs.

Definition 17. A tree decomposition of a graph G is a pair I' = (T, { X; }ev(r))
where T is a tree whose every vertex t has assigned a so called bag X; such that
X: CV(G) and the following conditions hold:

1. Every vertex of G is in at least one bag. In other words Uiy) Xt = Va.

2. For every edge {u,v} of G, there exists a bag X, t € V(T'), containing both
u and v.

3. For every vertex v of G, the set of nodes {t;v € X;} induces a subtree in
T.

To avoid ambiguity we refer to the vertices of the graph G as vertices and to
the vertices of the tree T' of a decomposition as nodes.

Definition 18. The width of a tree decomposition I' = (T, { X }iev(r)) is defined
as maxey(ry | X¢| — 1.

Definition 19. The treewidth of a graph G, denoted by tw(G), is the smallest
possible width of a tree decomposition of G.

For example, the treewidth of a tree (with at least one edge) is 1 because
there exists a tree decomposition with every bag of size at most two. For every
vertex we create a node with a bag containing just this vertex and for every edge
we create a node with a bag containing the two vertices of this edge. Then, we
connect all pairs of nodes corresponding to an incident pair, a vertex and an edge,
to obtain a tree. See Figure for an example of this construction.

As another example the treewidth of a clique with n vertices is n — 1. Clearly,
a node with a bag containing all vertices is a correct tree decomposition. It can
be proven that every tree decomposition of a clique must contain a node with a
bag containing all vertices. For the proof and other examples we refer to Cygan
et al. [g].

Working directly with a general tree decomposition is usually not convenient.
We instead work with the following special tree decomposition.

Definition 20. A nice tree decomposition of a graph G is a tree decomposition
I' = (T, { Xt }revr)) where the tree T' is binary and rooted, and for every leaf and
root t, the bag X; is empty. Furthermore, every non-leaf node t must be one of
the following types:

28

Figure 3.2: A graph with its tree decomposition and its nice tree decomposition
(the type of node is denoted by L for leaves, R for root, IE for introduced edge
nodes, F'V for forget vertex nodes, IV for introduce vertex nodes, and J for join
nodes).

1 Forget node: t has exactly one son t', and there exists v € Xy such that
X = Xy \ {v}. We say that v is forgotten in t.

2 Introduce vertex mode: t has exactly one son t', and there exists v €
V(G) such that X; = Xy U{v} and v ¢ Xy. We say that v is introduced
mt.

3 Join node: t has exactly two sons t1,12, and Xy = Xy, = X4, .

4 Introduce edge node: t is labelled by an edge {u,v}, it has ezactly one
sont', Xy = Xy, and u,v € X;.

Additionally, for every edge e = {u,v}, there is exactly one introduce edge node
t labelled with the edge e (we say that the edge e is introduced in t)

For an example of a graph with its tree decomposition and its nice tree de-
composition see Figure [3.2]

It is important that we do not loose generality by using this special version
of the decomposition because it can be constructed in polynomial time from a
general decomposition, according to the following lemma.

Lemma 26 ([8]). If a graph G admits a tree decomposition of width at most k,
then it also admits a nice tree decomposition of width at most k. Moreover, given
a tree decomposition I' = (T, { X, }rev (1)) of G of width at most k, one can in time
O(k* - max(|V(T)|, |[V(G)|)) compute a nice tree decomposition of G of width at
most k that has at most O(k - |V (G)|) nodes.

For every node t of a nice tree decomposition let V;, E; be the sets of vertices
and edges, respectively, introduced in the subtree T} (subtree of T rooted in ¢ and
containing all descendants of ¢). And let G; be the graph (V;, E}).

29

The most important property of a tree decomposition of a graph G is that
for every pair of adjacent nodes, the intersection of their bags of vertices is a
separator in the graph GG. More formally, the following lemma holds.

Lemma 27 ([8]). Let (T, {X;}icv(r)) be a tree decomposition of a graph G and let
(a,b) be an edge of T. The forest T — (a,b) obtained from T by deleting the edge
(a,b) consists of two connected components T, (containing a) and Ty, (containing
b). Let A= Uy, Xt and B = Usev(r,) Xi- Then (A, B) is a separation of G
with a separator X, N Xjp.

We will usually use it in the following form.

Corollary 28. Let (T,{X:}icv(r)) be a tree decomposition of a graph G and let s
be a node of T, and let the forest T'—s consist of connected components Ty, ..., T,,.
Let A; = X UUeyry) Xt for all i € [m]. Then for each distinct i,j € [m] the
vertices of A; and A; are separated by X5 in G (and also in all subgraphs of G
containing them,).

Proof. Let T; and T} be two distinct components of T'—s. Let a, b be the nodes of
T; and T}, respectively, adjacent to s. Let A} = Uy (1) Xi- Thus A; = X, U A
By Lemma , the vertices of A; and A;- are separated by X, N X, in G. Thus
they are separated also by X,. And since A, \ A;- C X,, it follows that A; and
A; are also separated by X, in G (and thus also in all subgraphs of G containing
them), which concludes the proof. O

We are interested in graphs with bounded treewidth. We need the structure
of a tree decomposition. Therefore it is essential that we can construct this de-
composition in time “good enough”. Luckily, according to the following theorem,
this is possible.

Theorem 29 ([1]). There exists an algorithm that, given an n-vertex graph G
and an integer k, runs in time kO®) . n and either constructs a tree decomposition
of G of width at most k, or concludes that tw(G) > k.

We now state the main theorem of this chapter. We prove it twice. For the
first time in section by Courcelle’s Theorem (without explicitly describing the
FPT algorithm). For the second time in section by designing our own FPT
algorithm.

Theorem 30. The problem ODDCOLOURING(G,k) is fized-parameter tractable
with respect to k together with the treewidth of G.

In particular, for graphs with bounded treewidth this problem is FPT only
with respect to the number of colours.

3.2 Courcelle’s theorem

In this section we prove Theorem [30| by using Courcelle’s Theorem. Before we
start, we need to describe a special logic used by the theorem and represent a
graph using a logical structure. We assume that the reader has an elementary
knowledge of logic.

30

For every graph G let |G] be the structure (V(G) U E(G),incg) where the
domain contains both vertices V(G) and edges E(G) of the graph and incg is
the binary incidence relation, incq C E X V', saying which vertices belongs to
which edges. Recall that we are dealing with simple undirected graphs. Thus the
structure |G| completely defines the graph G.

Properties of a graph can be expressed by sentences (formulas without free
variables) of relevant logical languages. A property expressed by a sentence ¢
holds for a graph G if |G| = ¢ (|G| is a model of ¢).

For example,

|G] |F Vaev (Beer(inc(e,)))

if and only if the degree of every vertex in G is at least one.

A monadic second order logic (MSOQED of graphs is a second order logic that
uses only variables representing vertices, edges, set of edges, and set of vertices.
It contains the predicate inc for testing edge-vertex incidence, the predicate =
for equality testing, and the predicate € for membership testing. Additionally,
it contains constants V' and F interpreted as the set of all vertices and edges,
respectively. Interpretation of a formula for a given graph G is then naturally
defined by its logical structure |G].

To distinguish between different types of variables, we use lower-case letters
for vertices and edges and upper-case letters for sets.

It is easy to see that the previous formula for testing if a graph has no isolated
vertices is a formula of MSO,. For brevity, we additionally use predicates adj(u, v)
for vertex-vertex adjacency testing and A C B for subset testing (for both vertex
and edge subsets). They can be easily rewritten as u # v A Jeep(incle,u) A
inc(e,v)) and as Vyey(r € A = x € B), respectively.

We give one more example to familiarize ourselves with this logic.

Hamil = 3ccp|Conn(C) AVpey Deg2(z, C)]

where the formulas Conn(C) and Deg2(z,C') are written as follows:

Conn(C) =Vacy|[(Fuev u € ANTpey v ¢ A) =
= (Jeec Juvev(incle,u) Nincle,v) Nu € ANv ¢ A))]

Deg2(z,C) = 3¢, erec [incler,) Ninc(e, z) A e # ea
Veeo((e # e1 N e # ea) = —inc(e, x))].

Rewritten in words, the edge set C' connects all vertices if for all non-empty
proper subsets A of V', there exists an edge in C' connecting a vertex from A with
a vertex not from A.

The second formula can be read as follows. The vertex = has degree 2 in the
edge set C' if exactly two distinct edges from C' are incident to z.

Therefore |G| models Hamil if and only if G has a Hamiltonian cycle because
a Hamiltonian cycle consists of exactly a set of edges connecting all vertices so

2Monadic because it uses only variables for vertices, edges and their sets. Subscripted by 2
because it allows edge variables and edge set variables.

31

that all vertices are incident to exactly two edges from this set.

In MSO, it is not possible to describe the cardinality of sets. When we deal
with ODDCOLOURING(G, k) we most likely have to describe the parity of
some sets. Therefore we use an extension of MSO, called the counting monadic
second order logic (CMSOs). This logic uses one additional predicate, Card,(X),
checking if the cardinality of X is a multiple of p. In particular, for p = 2 we get
the predicate Even(X) checking if the cardinality of X is even.

We are ready to state the Courcelle’s theorem, in a variant for the logic

CMSOs.

Theorem 31 (Courcelle’s theorem [7]). Let ¢ be a CMSO, sentence and G be
a graph given with its tree decomposition. There exists an algorithm deciding
whether |G| = ¢ in time f(|p],t) - n where t is the treewidth of G and n is the
size of G and f is some computable function.

In order to prove Theorem we construct a sentence ParityColourabley, for
a given k in CMSO, deciding if a graph has a parity colouring using k colours,
and then apply Theorem

ParityColorabley, = Ix, x,.. x,cv[Partition(Xy, ..., Xi)A
ngvpath<Y) — (Oddtzmes(Xl, Y)\/
Oddtimes(Xs,Y) V -- -V Oddtimes(Xy,Y))]

where Path, Partition and Oddtimes are auxiliary subformulas given below.
Rewritten in words, there exists a proper colouring with k& colours if and only if
we can partition vertices into k sets according to their colours and for every path
in G at least one of the partition sets has odd number of vertices in common with
that path. The auxiliary subformulas are defined bellow.

Partition(Xy, ..., Xg) =Veey|[(vE€ X3V -+ Vv € Xi)A
(g XaVog Xo)A---AN(v g Xy Vo ¢ XA
(g XoVog Xs)A---AN(v g Xo Vo Xp)A

(v ¢ X1 Vo g Xy

32

Path(X) = 3ycp Juy spex[Conn(X,Y) A Degl(zy,Y)A
Degl(2, V) Aoex((z # 71 A # 72) = Deg2(z,Y))

Conn(X,Y) =Vacx|[(Guex u€ ANTpex v ¢ A) =
= (Jeey Juvex(incle,u) Nincle,v) N\u e ANv ¢ A))]

Degl(z,Y) = 3o ey [inc(er,x) AVeey (e # 65 = —inc(e, x))]

Deg2(x,Y) = 3¢, eyey [incler, z) Ainc(es, x) A ey # eaN
Veey((e # €1 ANe # e3) = —inc(e,z))]

Oddtimes(X,Y) = Jacx[Even(A)A
Veex (€A = z2€Y)AN (2 ¢ A = x¢Y))]

The formula Partition(X, ..., X)) expresses that the variables X, ..., X}
form a partition of V. It does so by ensuring that every vertex is in some partition
set, and no vertex is in two partition sets.

The formula Path(X) expresses that vertices of X form a path of at least 2
vertices. In particular, there must exist a subset Y of edges such that one or two
vertices in X are vertices of exactly one edge from Y. The rest of the vertices must
be vertices of exactly two edges from Y. Moreover, to really ensure that it is a
path, X and Y must compose a connected graph. These properties are expresses
by subformulas Conn(X,Y'), Degl(x,Y), Deg2(z,Y’) that are all similar to the
ones we used in the example describing the Hamiltonian cycle.

The formula Oddtimes(X,Y’) checks if the intersection of X and Y has an
odd size. It does so by using the predicate Fuven.

Lemma 32. The size of the formula ParityColourabley, is in O(k?).

Proof. Clearly the subformula Partition is the largest one and it uses O(k?)
symbols. O]

Proof of Theorem [30. Let G be a graph and k a positive integer. By Theorem
we can find a tree decomposition of G in time tw(G)°(&)°) . n, where n is the
size of the graph GG. Thus we can apply Courcelle’s Theorem [31| on this graph, its
decomposition, and the formula ParityColourable,. Therefore there exists an al-
gorithm solving ODDCOLOURING(G,k) in time g(tw(G), |ParityColourabley|)-
n + tw(G)O(tw(G)3) -n for some computable function g. By Lemma |32| we can es-
timate the size of the formula, and so the problem is solvable in time g(tw(G), d-
k2 +¢) - n 4+ tw(G)°(E@°) . for some constants ¢, d. That can be bounded by
some other computable function A such that

g(tw(G),d- K + ¢) - n + tw(G)°) . n < h(tw(G), k) - n.

This concludes the proof. O

33

Even though we have a proof of Theorem [30] we still do not have the algorithm
solving ODDCOLOURING(G,k). We know it exists, but to obtain it, we would
have to look deep inside the proof of Courcelle’s theorem. The running time of
such algorithm depends on the inner structure of the formula ParityColourabley,
and thus it is likely to be very high. We rather present our own algorithm solving
the problem.

3.3 FPT algorithm computing the parity chro-
matic number

In this section we prove Theorem [30| by explicitly describing an algorithm solving
problem ODDCOLOURING(G,k). This algorithm is an extension of the algo-
rithm used in Section [2.3] Similarly to our previous approach, we first solve a
different problem: deciding whether a given colouring is proper.

3.3.1 Verifying the correctness of a colouring using tree
decompositions

Theorem 33. Given a graph G with its nice tree decomposition I' of width tw
and a colouring c: V(G) — {1,...,k}, there exists an algorithm that in time
twPtw) . 20(0) .y decides whether the colouring c is a proper parity vertez colouring
where n is the maximum from the size of G and the number of nodes in the tree

of I.

We explicitly design the algorithm to prove the theorem. Let G' be the input
graph given with its nice tree decomposition I' = (T, {X;}icv(r)) and with a
colouring ¢ using k colours. We proceed by dynamic programming on the nice
tree decomposition, from leaves to the root. We have to check that there is
no parity path. But instead of looking at every path separately, we exploit the
structure of the tree decomposition. When we were dealing with trees, we used
the property that every node of a tree is a separator, so every path connecting
two parts separated by the node had to go through that node. Thus for our
inductive approach we could forget already processed parts of the tree and only
remember the parity vectors of paths ending in the current separator node and
contained in already processed parts.

Using a nice tree decomposition, we similarly know by Corollary [2§8| that for
every node t, the bag X; forms a separator that separates the graph G; from
the rest of G. Thus we can also forget already processed parts of the graph and
only remember relevant information in the nodes. When we consider how the
intersection of a path with G, can look like, we see that it is some set of pair-wise
disjoint paths with almost all endvertices in the separator X; (except, possibly,
the endvertices of the original path). Therefore, for every possible intersection of
a set of pair-wise disjoint paths (paths in G; and having non-empty intersection
with X;) with the separator X;, we will remember all possible parity vectors of
sets of paths in G; that have this intersection with the separator. In this way,
when we look only on the unprocessed part and on the separator we can determine
parity vectors of all paths in G (except the ones entirely in the forgotten part.

34

Figure 3.3: A path-partition P = {({a, b}, S1), ({¢, 0}, S2), ({0,0}, S3)} of (¢, X)
admitted by a set of paths F = {P;, P», P3}.

We will remember these paths separately). For graphs with bounded treewidth,
the size of bags (thus the separators), and consequently the number of possible
intersections is constant.

Let us first examine how does the intersection of a set of pair-wise disjoint
paths with a bag of a node of T' can look like. Let F = (P,..., P,) be a set
of pair-wise disjoint paths in G;. And let S; be the intersection of P, with X,
(see Figure for an example). We see that the sets S; form a partition of some
subset of X;. Additionally, for every path we need to know if and where it ends
in X;. This lead us to the following definitions.

We start with a pair that will represent the intersection of a single path with
X;.

Definition 21. Let t be a node of T. We call the pair ({a,b},S) a path-wise
pair (of t) if S C Xy and {a,b} C SU{0} where 0 is a special, previously unused,
symbol.

The symbol 0 will represent vertices that are not in Xj.

Remark. A pair ({a},S), for some S C X; and a € S U {0} is a path-wise pair
of t. For these types of pairs having just one element in the first set, we use the
notation ({a,a}, S) because then all path-wise pairs have the same syntax.

Now we need to define how does the pair represent an intersection of some
path with Xj;.

Definition 22. Let t be a node of T and C be a path in Gy such that the inter-
section S of C with Xy is non-empty. And let {a’,V'} be the endvertices of C' and
a be defined as o' if a’ € X; and as 0 otherwise. And let b be either b’ or 0 in a
similar way. Then we say that the path C admits a path-wise pair ({a,b},S) in
the context of t.

35

Observe every path C' in GG; that has an non-empty intersection with X;, de-
fines exactly one path-wise pair ({a, b}, S) of t admitted by this path. For exam-
ple on Figure paths Pj, Py, Py admit path-wise pairs ({a, b}, S1), ({c, 0}, S2),
({0,0}, S3), respectively.

As a next step we define a structure that will represent an intersection of a
set of paths with Xj;.

Definition 23. Let t be a node of T, X be a non-empty subset of Xy, | be a
positive integer, and P be a set {({a;, b;}, Si) }icyy of path-wise pairs of t such that
(S1,...,8) form a partition of X (i.e. Uie Si = X, Vijeminzs SiNS; =0, and
Viep)Si # 0). Then we call the set P to be a path-partition of (¢, X).

For an example of a path-partition see Figure [3.3]

Remark. Observe that the set X is defined by its partition, so having X as a pre-
requisite for defining path-partition is redundant, we can just say that {Sy,..., 5}
forms a partition of some non-empty subset X of X;. Even though it is usually
more convenient to have the subset of X; named, we sometimes use an expression
a path-partition of t instead of (¢, X).

It remains to say how exactly a path-partition represents an intersection of a
set of pair-wise disjoint paths with X,.

Definition 24. Let t be a node of T, X be a non-empty subset of X;, P be
a path-partition of (t,X), and F be a non-empty set of pair-wise disjoint paths
in Gy. Then we say that F admits triple (¢, X,P) if |F| = |P| and there exists

a perfect matching between elements of P and F such that every path-wise pair
({a,b},S) € P is admitted by the matched path C from F.

For an example of a path-partition admitted by a set of paths see Figure [3.3]
Observe that every t together with every non-empty set F of pairwise disjoint
paths in G; such that every path from F has a non-empty intersection with X,
defines exactly one triple (¢, X,P) admitted by F where X = UF N X;. Thus we
can call P an intersection of F with X;.

As hinted before, for every possible intersection of sets of pair-wise disjoint
paths in G; with X, (such that these paths have non-empty intersections with
X;), we want to remember parity vectors of all paths having this intersection with
X;. This motivates the following definition.

Definition 25. For every node t, every non-empty subset X of X;, and every
path-partition P of (t, X)), we denote by M(t, X, P) the set of parity vectors such
that every vector v € {0,1}F is in M(t, X,P) if and only if there exists at least
one set of paths F admitting (t, X,P) such that pv(UF) = v. In other words,
M(t, X,P) is a union of parity vectors of all sets of paths in Gy admitting the
triple (t, X, P).

Remark. As we stated earlier, in the triple (¢, X,P) the set X is defined by P.
Thus, we sometimes use (¢,P) instead. And similarly we use M (¢,P) instead of
M(t, X, P).

Our main interest is in parity vectors of paths. Thus we will remember all

parity vectors of paths in the already processed part of GG in the set N defined as
follows.

36

Definition 26. For every node t we denote N(t) the set of parity vectors o of
dimension k such that there exits a path C' in Gy — X, satisfying pv(C) = o.

Before explaining how to compute these sets we show how they solve our
problem.

Lemma 34. Let r be the root of T. Then there exists a path C in G satisfying
pu(C) =1 if and only if l € N(r).

Proof. From the definition it follows that [€ N(r) if and only if there exists a
path C' in G, — X, such that pv(C) = [. Since X, is empty (by the definition of
the nice tree decomposition) and G, = G, it follows that there is no restriction
imposed on this path. Thus it concludes the proof. O

Corollary 35. Let r be the root of T'. Then the colouring of G is proper parity
colouring if and only if the zero parity vector of dimension k is in N(r) .

Therefore it is sufficient to compute the set N (r) for the root r of our nice tree
decompostion. For that purpose we must compute all of the sets N (t), M (t, X, P).

Now we explain how to compute these sets. We proceed inductively on the
decomposition. Thus, when we are computing the set M (¢, X,P) or N(t), we
already know all sets M (¢, X', [P") and N(t) for every child ¢’ of ¢. We show
how to compute this set for every type of node in the nice tree decomposition
separately.

1. Forget node. Suppose that ¢ is a forget node with one son ¢’ such that
Xy = X \ {v} and v € Xp. We need to find the set N(¢) and also sets
M(t, X, P) for all non-empty X C X, and all path-partitions P of (¢, X).
We start with N(¢). We prove that

N(t) = N()U U M(#',{v}, {(H,{v}H})

He{{0,0},{0,0},{v,v}}

We denote the right side of this equality by R.

Let o € N(t). From the definition of N(¢) it follows that there exists a
path F'in Gy — X; satisfying pv(F) = o. It either contains v or not. In the
former case F'N Xy = v. Thus {F} admits (¢, {v}, {(H,{v})}) where H is
either {0,0}, {0, v}, or {v, v} (it depends on the endpoints of F'; H = {0,0}
if both of the endvertices of F' are different from v, H = {v,0} if one of
them is v and H = {v,v} if F' = (v)). Therefore o € M(t',{v},{(H, {v})}).
In the latter case F' € Gy — Xy and so o € N(t'). Thus in both cases o € R.

On the other hand, let o € R. Either

o€ U M(t v}, {(H.{v})})
He{{0,03,{0,v} {v,0}}

or o € N(t'). In the former case from the definition of M it follows that
there exists a set of paths F admitting {(H,{v})} such that pv(F) = o.
Thus F consists of only one path C such that C' N Xy = {v}. In the lat-
ter case o € N(t'), so there exists a path C satisfying C' N Xy = @ and

37

pu(C) = o. In both cases C' N X; =) and pv(C') = o. Therefore o € N(t).

It remains to find the set M (¢, X,P). Denote by M; the sets of parity
vectors of all sets F of paths admitting (¢, X,P) such the set F' covers wv.
And denote by M the sets [F of parity vectors of all sets of paths admitting
(t, X,P) such the set F does not cover v. It follows that M(¢, X,P) =
M; U Ms, so it is sufficient to find the sets M; and Ms.

Recall that v € Xy, but v ¢ X; and consequently v ¢ X. It implies
that every set of paths admitting (¢, X,P) does not cover v and it admits
(t, X,P). And conversely, every set of paths admitting (¢, X,P) and not
covering v admits (¢, X, P). Thus

M, = M(¢, X, P).

Now let us proceed to M;. For every P = ({a,b},S) € P (note that
always S # () and v ¢ S) define P' := ({a,b}, S U {v}) a path-wise pair of
t'. Moreover, if a = 0 define P” := ({v,b}, S U {v}) a path-wise pair of ¢'.
And if b = 0 define P” := ({a,v}, SU{v}) (if a = b = 0 these pairs are the
same). We will show that

My, =M, X U{v},P) (3.1)

]P)/

where the union is taken over all possible P’ obtained from P by replacing
one P € P' with one of P’ or P” (if P” exists). The union includes both of
these possibilities. Denote the right side of Equation by R.

Let o € M;. Then there exists a set of paths F with parity vector o such
that F admits (¢, X,P), and v € UF. Thus, there is a path F' € F satisfying
v € F and admitting some P = ({a,b},5) € P (in the context of t). This
path admits (in the context of t') either P’ if F' does not end in v, or P’
otherwise. Since every other path from F has the same intersection with X,
as with Xy, it follows that F admits (¢', X U {v},P'), where P’ is obtained
from P by replacing P with P’ or P”. Therefore o € R.

On the other hand, let o € R. Then there exists a set of paths F with
parity vector o such that F admits (¢, X U{v}, P’) where P’ is obtained from
P by replacing one P € P with either P’ or P”. Thus there exists a path
F € F such that v € F, and F' admits P’ or P” (The one that is actually
in P'. It also decides whether F' ends in v or not). In both cases F' admits
also P (in context to t). Hence F admits (¢, X, P), therefore o € M.

. Introduce vertex node. Suppose that ¢ is an introduce vertex node with
one son t' such that X; = Xy U {v} and v ¢ Xy. Recall that every edge
needs to be introduced to be in Gy, but it can not happen before introducing
incident vertices. Thus vertex v is isolated in G;. We need to find the sets
N(t) and M(t, X,P) (for all X and P). First observe that N(t) = N(t')
because the graph G; — X, is the same as Gy — Xy, and so a path in one of
these graphs is also a path in the second one.

38

Now we prove that

M, X,P) ifv§éX{, \

if X ={v} and
P={({v, v}, {vh},

if ve X, |X|>2, and
({v, v}, {v}) € P,

0 otherwise.

where P’ =P\ {({v,v},{v})}.

First assume that v ¢ X. Then every set of paths admitting (¢, X, P)
does not use v, thus this set lies also in Gy, therefore it admits also (¢, X, P).
Since the converse trivially holds as well, it follows that M (¢, X, P) =
M(t', X,P). From now on assume that v € X and let P := ({v,v}, {v}).

Assume that P ¢ P, and suppose that there exists a set of paths F
admiting (¢, X, P). The path-partition P contains some path-wise pair of ¢,
say A = ({a,b},S) such that v € S. This pair must be admitted by some
path F' from F. But that is not possible because F' can consist of only the
vertex v (v is isolated), and so F' can admit only the pair P, which is not in
P. It follows that there is no set of paths admitting M (¢, X, P). Therefore
M(t, X,P) = 0.

If X ={v} and P = {({v,v},{v})}. Then (¢,X,P) = pv(v) because P
can be admitted only by {(v)} (v is isolated).

Now assume that P € P and that |X| > 2. Let o € M(¢, X,P). Then
there exists a set of paths F with a parity vector o, covering vertex v, and
admitting (¢, X,P). The only possible path admitting ({v,v},{v}) is the
path consisting of only vertex v because v is isolated. Thus, there exists
a path F' € F such that ' = (v). Let I’ := F \ {F} (observe that F’ is
not empty). Clearly F’ admits (¢, X \ {v},P\ {P}). Since Xy = X; \ {v}
and v ¢ UTF', it follows that F" admits also (¢, X \ {v}, P\ {P}). Therefore
o+pv(v) e M, X\ {v},P\{P}).

On the other hand, let o € M(t', X \ {v},P\ {P}). Then there exists a
set of paths IF (because | X \{v}| > 1) with the parity vector o and admitting
(t', X\ {v},P\{P}). Note that F does not cover v, so it holds that FU{(v)}
admits (¢, X,P). Thus o+ pv(v) € M(t, X, P).

. Join node. Suppose that ¢ is a join node with two son t,%5. It implies
that X; = X, = X;,. Note that by Lemma it follows that V;, and V,,
are separated by X;. We need to find the sets M (¢, X,P) and N ().

The set N(t) contains parity vectors of all paths in G; that have an
empty intersection with X;. Since vertices in V;, and V;, can be connected
only through X, it follows that these paths can only be entirely in Gy, or
in Gy,. Therefore

po(v)
M(t, X,P) =
M, X\ A{v},P) @ pv(v)

N(t) = N(t1) U N(t).

Observe that every edge of Gy is either in Gy, or Gy, but not in both
because every edge is introduced only once. Thus every path in G; can be

39

Figure 3.4: An example of a set of pair-wise disjoint paths in Gy
where ¢ is a join node. Blue edges belong to G; and red ones be-
long to GYy,. The set of paths {Fi, F,} splits into sets of paths
{(a,b,c,d,e),(i,7)} and {Fy,(e, f,q,h,0)}. The admitted path-partitions
{({a,e}.{a,c.d,e}), ({1, 7}, {i. 1)} and {({0,k},{k.1}), ({e, i}, {e, [, h,i})} al-
ternately compose {({0, k}, {k,1}), {a,7},{a,c,d,e, f,h,i,5})} that is admitted
by {F17F2}.

split to two sets of pair-wise disjoint paths, one containing edges from Gy,
and one from Gy,. This leads to the following definition.

Definition 27. Let F be a set of pair-wise disjoint paths in G;. And let
Fy,Fy be sets of pair-wise disjoint paths obtained from F by splitting (in
vertices) every path of length at least 1 in F to maximal paths (of length at
least 1) contained entirely in Gy, , or Gy, such that Fy contains the resulting
paths in Gy, and Fy contain the resulting paths in Gy,, and the original
paths of length 0 are also each in one of these sets. We say that F splits to
Fy and Fy. Alternatively, we say that 1 and Fy compose F.

For an example how a set of paths in GG, splits into two sets of paths see
Figure |3.4]

If we take the split paths in the order of the original paths, then the

paths from Gy, and G, will alternate (see Figure . We have to be able
to describe all of this by our path-partition terminology. Thus we need
some more definitions.
Definition 28. Let A := ({a},a;},{a1,...,a;}) be a path-wise pair of t
such that a} is either ay or 0 and a; is either a; or 0. We say that A is
splittable into path-wise pairs (Ay, As, ..., A,), if Ay = A in case p = 1
and in case p > 1 if there exist integers by, ba, ..., by—1 such that 1 < by <
by < - <bpp <by_1 <1, ay, #ay, ay, , # aj, and

Ay = ({d},ap, },{as, .. .,an }),
A2 = ({abnabz}a {abp cee 7ab2})7

Apfl = ({abp—27 abp—l}? {abp—27 s 7a/bp—1}))
A, = ({abpfl, art {a, ... ,al}> :

40

We say that (Aq, As, ..., A,) compose A.

Observe that if (A, Ay, ..., A,) compose A and p > 1, then each A; can
be admitted only by paths of length least 1.

Example 2. A pair-wise pair A = ({a,b},{a,b,c,d, e, f, g}) is splittable into
pairs (({a,d}, {a,e,9,d}), ({d, f}, {d, e, f}), ({£.0},{£.b})).

Additionally, we need the paths to be composed alternately. Thus we
need to define alternate composition also for path-partitions. Recall that
path-partitions are special types of sets of path-wise pairs.

Definition 29. We say that path-partitions (sets of path-wise pairs) A and
B alternately compose a path-wise pair C' if AUB can be ordered so that it
composes C' and the pairs from A and B in the ordering of this composition
alternatd’]

We say that path-partitions A and B alternately compose a path-
partition {Cy,...,Cyn} if we can partition A;B into (Aq,...,A,) and
(By,...,Bn) so that

(a) U; A; = A and U; B; = B,

(b) for all distinct i,j in [m]: A;NA; =0 and B, NB; = 0,
(c) for alli in [m]: A; £ 0, or B; # 0,

(d) for alli in [m]: A; and B; alternately compose C;.

Ezample 3. The sets {({a,d}, {a,e,g,d}), ({f,0},{f,b})} and
{({d, f},{d,c, f})} alternately compose ({a, b}, {a,b,c,d,e, f,g}).

For another example see Figure 3.4 We now show how does the split-
tability of a set of paths in G; to sets of paths in G, and Gy, corresponds
to the splittability of an admitted path-partition.

Lemma 36. Let F be a set of paths in Gy such that F splits to F1,Fy. And
let P be the intersection of F with X;, Py be the intersection of F1 with X,
and Py be the intersection of Fy with X;. And let (t, X, P), (t1, X1,Py), and
(to, Xo,IPy) be the triples admitted by F, Fy, and Fo, respectively. Then Py
and Py alternately compose P.

Proof. 1t is sufficient to prove it just for F containing only one path. If F
contained more paths, we could split FF; and [y to parts according to the
paths of F they belonged to and prove it separately. Thus let F = {F'}.
Additionally, assume that F' splits into the same amount of paths in G;, and
G,. Due to the maximality of split paths, two paths from the same F; can
not be next to each other (as subpaths of F'). Thus the number of paths in
F, and Fy can differ at most by one, so other cases are analogous. Thus [F;
and Fy have the following form: {F}, ..., F{} =F; and {F},..., F§} =T,
such that

F=FloF}lo---0oF'oF§ (3.2)

where the o denotes concatenation by vertex (i.e. the endvertex of one
path is joined with the startvertex of the consecutive path).

3Specifically, {C} and {} alternately compose C.

41

The set of paths F admits triple (¢, F N Xy, {({z,y}, FN X})}) (where x
corresponds to the startvertex of F' and y corresponds to the the endvertex
of F'), F; admits triple (¢, X1,P;) (defined by the intersection of F; with
X;), and Fy admits triple (2, X5, Py) (defined by the intersection of Fy with
Xy).

Let s(F"), e(F") denote the startvertex and the endvertex (relative to the
path F), respectively, of every subpath F’ of F. Then F} admits the path-
wise pair ({z,e(F)}, Fi N X;), Fy admits the pair ({y, s(F$)}, Fs N X,),
and all other F}’s admit the pairs ({s(F}),e(F?)}, F/ N X;). In particular,
note that the vertices where the paths are joined together (thus all start
and end vertices of all Fij, except the two corresponding to the start and
the end of the original path) lie in X;. Thus, we can order all path-wise
pairs according to and it can be easily seen that Py U P, alternately
compose the pair ({z,y}, FF N X;).]

Lemma 37. Let Py and Py be path-partitions of (t1, X1), (t2, X2), respec-
tively, such that they alternately compose some path-partition P of (t, X).
Let F1,Fy be sets of paths admitting (t1, X1,P1) and (t3, Xo,Ps), respec-
tively. Then there exists a set of paths F such that Fy and Fy compose F
and F admits (t,P).

Proof. Note that [y lies entirely in Gy, and Fy lies entirely in Gy,. If some
pairs from P; and P, alternaly compose some other pair P, then we can con-
nect the corresponding admitting paths in the endvertices through which
the corresponding pairs are connected, and obtain a simple path admitting
P. Therefore, since P; and P, alternately compose P, we can in similar fash-
ion compose the paths from F; and F; to obtain a set of paths F admitting
(t,P). m

The last piece we need to know is how the parity vector of a set of paths
in G; and the parity vectors of its split (two set of paths in Gy, and in Gy,)
are related.

Lemma 38. Let Fq, Fy be sets of paths in Gy, and Gy,, respectively, such
that they compose some set of paths F in Gy. Let (t1, X1,P1) be admitted by
Fy and (ty, Xo,Ps) be admitted by Fy (as we know these triples are defined
uniquely). Then pu(F) = pu(Fy) + pu(Fy) + pu(Xo N Xy).

Proof. Since G, and Gy, are separated by X, it follows that UF; NUF, C
X;. For X; and X, it holds that X; = UF;NX;, and X, = JFsNX,. Thus
UFNUF,; = X;NX5. Obviously it holds that JF,UUF, = UF. Moreover,
the paths in Fy, in Fy, as well as in F are disjoint, thus in pv(Fy) + pv(Fy) +
pv(Xo N X7) we count the colour of every vertex covered by F odd number
of times and the proof is concluded. n

We prove that we can compute M (¢, X, P) in the following way.
M(t,XJP) = U (M(tl,Xl,]P)l)EB(M(tQ,XQ,PQ)@p'U(XQﬂXl)))

X1,P1,X2,P2

(3.3)

42

where the union is taken over all non-empty X;, Xy and over all path-
partitions Py, Py of (¢1, X;), (t2, X3), respectively such that P; and Py alter-
nately compose P (thus X; U Xy = X).

Denote L the left side of Equality , and R the union on the right
side. Let v € L. There exists a set of paths F admitting (¢, X, P) such that
pu(F) = v. We split F into F; and Fy (Fy, Fy lie in Gy, Gy,, respectively).
Let (t1, X1,Py) and (t9, X5,IPy) be the triples admitted by F; and Fy, re-
spectively. By Lemma [36), P; and Py alternately compose P. Moreover,
pu(F) = pv(Fy) + pu(F2) + pu(Xs N X;) according to Lemma It follows
that v € R.

On the other hand take v from R. Then there exist path sets [y, [Fy
admitting (t1, X1,P1) and (t9, X, Py), respectively. Since P; and Py alter-
nately compose P, Lemma implies that there exists a set of paths F
admitting P such that F; and Fy compose F. Moreover, pv(F) = pv(F;) +
pv(F2) + pu(X, N X;) according to Lemma [38) Thus v € L. And the case
of a join node is concluded.

. Leaf node. Suppose that ¢ is a leaf node. Recall that for a leaf ¢ it holds
that X; =). Since the only subset of an empty set is an empty set, there is
no path-partition of ¢ and consequently no set M (t, M,P) to be computed.
Therefore we only need to find N(t). It holds that N(¢) = () because there
is no path in the graph G;.

. Introduce edge node. Suppose that t is an introduce edge node intro-
ducing an edge e = {v,u} and let ¢’ be the only son of ¢. It means that
X = Xy, By = Ev U{e}, and e ¢ Ey. We need to find the sets N(t) and
M(t, X,P). It is easy to see that N(t) = N(t') because the graphs G; — X;
and Gy — Xy are the same.

It remains to find the value of M (¢, X,P). Let M, be the set of parity
vectors of sets of paths admitting (¢, X,P) such that the path sets covers
the edge e. And let M; be the set of parity vectors of sets of paths ad-
mitting (£, X,P) such that the path sets do not cover the edge e. Clearly,
M(t, X,P) = M; U Ms.

Recall that X; = X and that G; —e = Gy, so every set of paths admits
(t, X,P) and avoids e if and only if it admits (¢, X,P) . Therefore

M, = MY, X,P).

In the next part we will be splitting one path from a set of paths in the
edge {v,u} (because {v,u} is in G, but not in G}). Since path-wise pairs
represent paths, we need to be able to split path-wise pairs.

Let A = ({a,b},S) be a path-wise pair of ¢ such that u,v € S. We
say that A is splittable in the edge {v,u} into path-wise pairs ({a,c;}, S1),
({b, c2}, Ss) if the following conditions are satisfied:

(a) ¢ € 51, and ¢y € Sy,

(b) {e1, ca} = {u, v},

(c) S1US, =S5,

(d) S1NSy =0,

(e) a € S;U{0}, and b € S, U {0}.

43

Now we show that

A — 4 Uaa, M X P, if 34 = ({a,b},) €Pru,v € S
o 0, otherwise

where P = PU{A;, Ay} \ {A} and the big union is taken over all path-wise
pairs Ay, Ay such that A is splittable into A, Ay in the edge {u,v}.

First, assume that u,v are not in the same set S of any pair ({a,b}, S)
from P. Then no set of paths covering the edge e can admit M (t, X, P).

Now assume that there exists P € P such that P = ({a,b},S) and
u,v € S.

Let o € Ms. There exists F such that pv(F) = o, F admits (¢, X, P),
and e is covered by F. Thus there exists a path C' from F admitting P.
By assumption, e is used in F, hence e must be a part of C'. Therefore
we can split C' in e into two paths Cj, C5 such that they admit pairs
P = ({a,2},C1 N S), P, = ({y,b},Cy N S) respectively, where z is the
vertex from u, v that is in C}, and y is the other one (the one that is in Cy).
Note that it does not depend whether we mean the context of ¢ or ¢ since
X; = Xy and C}, (5 are in both Gy and Gy. Observe that P is splittable in
the edge {v,u} into pairs P;, P,. Therefore F\ {C} U {C},Cy} admits the
triple (¢, X,P\ {P} U{Py, »}). Since this new set of path has the same
parity vector, it follows that o € M(¢', X, P\ {P} U{ P, P,}).

On the other hand, let 0 € (¥, X,P") where P = P\ {P} U {P, P»}
such that P is splittable in the edge {v,u} into pairs Py, Po. Then there
exists a set of paths F admitting the triple (¢, X,P') such that pv(F) = o.
Since e is not in Gy, it can not be a part of F. Let C5, C; be the paths
from F admitting P, P,, respectively. We can connect them by an edge
e and obtain a path C that admits the pair P in the context of t. Let
Fy :=F\ {Cy,Co} U{C}. Tt follows that pv(F;) = pv(F) and F; admits the
triple (¢, X,P). Therefore o € M.

Proof of Theorem[33. We are given a graph GG with its nice tree decomposition I'
and a colouring ¢ of V(G) and we want to check if there exists a parity path
in G. Let tw be the width of I' and n be the maximum from the size of G
and the number of nodes in the tree of I'. First, for every node ¢ of a nice tree
decomposition T', all non-empty X C X;, and all path-partitions P of (¢, X),
we compute the set N(t) and the sets M (t, X,P) by the dynamic programming
explained above. By Corollary there exists a parity path in G if and only if
z € N(r) where z is the zero vector of dimension k& and r is the root of I.

Let us briefly examine the running time of this algorithm. Every bag X, has
cardinality at most tw+1. Thus there are at most (tw+1)"*! partitions of subsets
of X; for each node. Therefore there are at most (tw + 1)™*! . (tw + 2)? path-
partitions of ¢ (the pair representing endvertices has at most (tw + 2)? distinct
values). Consequently there are at most that many sets M to be computed for
every node. Each set M, N contains at most 2* parity vectors. Additionally, the
formulas to compute every set (M or N) for each node t requires considering
at most all the pairs of sets M, N for some other nodes. And so the formulas
are straightforwardly implementable in time polynomial with the number of path-
partitions and the size of required sets M, N. Thus the running time is in tw®®®).
20(k) for every node. Therefore it is tw@®) . 20() . in total. O

44

Let us give a name verifycolouring to this algorithm because we will refer
to it in the next section.

3.3.2 Computing the parity chromatic number using tree
decompositions

Now we describe FPT algorithm for the problem ODDCOLOURING(G,k), which
proves Theorem [30] Let us first assume we have a graph G given with its nice
tree decomposition I' = (T, {X;}icv(r)). We want to determine whether G has
a parity vertex colouring with £ colours. The assumption that we are given the
graph with its nice tree decomposition is not a problem because, as we already
know from Theorem 29 and Lemma 26} it can be constructed by a fixed parameter
algorithm.

We could try all possible colourings of G and verify them, one by one, using
the algorithm verifycolouring. But the running time would be exponential
with the size of G. We rather use the same idea we used for the FPT algorithm
finding the parity chromatic number of a tree. That is, we take the algorithm
verifycolouring and proceed similarly on the decomposition. When we had
just one fixed colouring, the “state” of each vertex was fixed. Now we will re-
member all possible “states” for each node. By “state” we mean the evaluation
of all sets M, N together with colours of X; (later we show that we do not need
the colours of X;). For computing possible “states” for each vertex we will take
all possible “states” of its children and compute “states” of the new vertex by the
algorithm verifycolouring. There are at most £**! colourings of each X, and
at most (tw+ 1)™" . (tw + 2)% sets M. And each set M, N can have at most
22" distinct values. Thus for each node the number of distinct “states” is at most
ftwtL . (22°) Lo)™ (w02)? which for a bounded tw and k is bounded. Let us
now describe this algorithm formally.

We will use the same notation of sets M(t), N(t) for each node t as in the
previous section. But we do not have a fixed colouring, and so for a colouring
¢ of G we denote the sets M, N corresponding to ¢ by M., N.. We also use the
shorter notation of path-partitions and sets M: a path-partition of ¢ (instead of
a path-partition of (¢, X)), and M(¢,P) instead of M (¢, X, P).

We need to be able to capture all possible “states” of each node without
depending on a colouring. Thus we will gradually define an evaluation of path-
partitions of ¢ (corresponding to sets M), then an evaluation of all path-partitions
of t together, and finally an evaluation of processed paths of ¢ (corresponding to
sets N(t)). For each of these we also specify how it corresponds to colourings.

We start with an evaluation of a single path-partition.

Definition 30. Let t be a node of T and P be a path-partition of t. We call
the pair ((t,P),Y) where Y is a non-empty set of parity vectors of dimension
k an evaluated path-partition of P. We say that the evaluated path-partition is
evaluated by Y .

Definition 31. Let t be a node of T, P be a path-partition of t, ((t,P),Y) be
an evaluated path-partition Pe,, and ¢ be a colouring of G. We say that the
colouring ¢ admits P, if Y = M.(t,P).

45

Figure 3.5: An example of a graph G with its nice tree decomposition with a join
node ¢.

Observe that given a colouring ¢ of GG, a node t, and a path-partition P of
t, there exists exactly one set Y of parity vectors so that ¢ admits an evaluated
path-partition of P evaluated by Y. Specifically, Y = M.(t,P).

Example 4. Consider a graph G with its nice tree decomposition as on Figure
B.5] Let t be the join node of the decomposition as on the Figure. Assume
k = 2. Let col be a colouring of G given as col(a) = 1, col(b) = 1, col(c) = 2
and P = {({0,b},{b})} be a path-partition of £. Observe that the only paths
admitting P (in context of t) are (a, b) and (b, ¢). Then an evaluated path-partition
P., = ((¢,P),{(0,0),(1,1)}) is admitted by col because (0,0) is the parity vector
of (a,b) and (1,1) is the parity vector of (b,c). Simultaneously, P., is the only
evaluated path-partition of P admitted by col and M., (t,P) = {(0,0);(1,1)}.

We continue with defining an evaluation of all path-partitions of one node.

Definition 32. Let t be a node of T', P be a family of all path-partitions of t,
and for every P € P let P, be an evaluated path-partition of P evaluated by
some set Yp of parity vectors. We call the set M(t) of all such P, an evaluated
separator of t.

Definition 33. Lett be a node of T', and ¢ a be a colouring of Gy with k colours,
and M(t) be an evaluated separator of t. We say that the colouring ¢ admits M(t)
if ¢ admits all evaluated path-partitions from M(t).

Observe that given a node t and a colouring ¢ of (G, there exists exactly one
evaluated separator of t admitted by the colouring c. Specifically, it is the set of
evaluated path-partitions of all path-partitions P of ¢ admitted by ¢ (as we know,
for every path-partition there is exactly one such evaluated path-partition). Thus,
it corresponds to the set of all M.(t,P) for all path-partition P of ¢. Let us denote
this evaluated separator by M.(t).

Ezxample 5. Consider a graph G with its nice tree decomposition as on Figure[3.5]
Assume k = 2. Let col be a colouring of G given as col(a) = 1, col(b) = 1, col(c) =

2. Let Py := {({0,0}, {b})}, Py := {({b,0}, {b})}, and Py := {({b, b}, {b})}. Then

a set P of all path-partition of ¢ is equal to {IP;,[Py,P3}. Observe that P; is

46

admitted only by path (a,b, ¢), Py is admitted only by paths (a,b), (b, c), and P3
is admitted only by path (b).
Thus an evaluated separator

() = { (0P, 0.0 (¢ P 10,0 1., (0 Pa). 1,00) |

is admitted by col. Simultaneously, M(t) is the only evaluated separator of t
admitted by col and M(t) = M, ().

Note that an evaluated path partition of ¢ does not have to determine any
colouring of GG, nor GG;. But according to the following lemma it does determine
the colouring of Xj.

Lemma 39. Let t be a node of T and M(t) be an evaluated separator of t such
that Ml(t) is admitted by at least one colouring. Then the colour of every vertex
from Xy in every colouring ¢ of G admitting M(t) is uniquely determined by M(t).
Specifically, the colour of a vertex v from X, is the colour corresponding to the
only vector in the evaluation of the evaluated path-partition of {({v,v},{v})} from
M(t).

Proof. First of all, for every v € X the set P = {({v,v},{v})} is a path-partition
of t. Let P., = ((¢,P),Y) be the only evaluated path-partition of P from M(¢).
And let ¢ be a colouring admitting P,.,. Then the evaluation of P, has to be
M.(t,P). Thus M.(t,P) =Y. But M.(t,P) contains only the parity vector of the
colour of v because the only path-wise pair ({v,v}, {v}) from P is admitted only
by the path composed of only the vector v. Therefore Y = {pv(v)}, but Y is
constant, and so the colour of v has to be the same in every colouring admitting

M(¢). Thus, it is exactly the colour corresponding to the only parity vector from
Y. m

This lemma implies that we do not need a colouring of X, as a part of our
“state”. The last part is to define an evaluation of a set N ().

Definition 34. Let t be a node of T. We call the set N(t) of some parity vectors
of dimension k an evaluation of processed paths of t.

Definition 35. Let t be a node of T, and ¢ a be a colouring of G, and N(t) be
an evaluation of processed paths of t. We say that the colouring ¢ admits N(t) if
N(t) = N(t).

FExample 6. Consider a graph G with its nice tree decomposition as on Figure
B.-5l Assume k = 2. Let col be a colouring of G given as col(a) = 1, col(b) = 1,
col(c) = 2. Recall that N.,(t) contains parity vectors of all paths in G; — X
coloured by col. Since the only paths in G; — X, are (a) and (b), it follows that
Neor(t) = {(1,0);(0,1)}. Thus the set N(¢) := {(1,0);(0,1)} is admitted by col
(and it is the only one admitted by col).

Now we put this together to finally define the state of each node that we use
in the dynamic programming.

Definition 36. Let t be a node of T. We denote by 1L(t) the set of all pairs
(M(¢),N(t)) where M(t) is an evaluated separator of t and N(t) is an evaluation

of processed paths of t such that there exists a colouring of G admitting both M(t)
and N(t).

47

Thus one pair in L(¢) completely defines the state of the node ¢ in the algo-
rithm verifycolouring for at least one colouring.

Ezample 7. When we consider the situation on Figure , the set M(¢) from
Example [and the set N(¢) from Example [6] we see that the pair (M(¢), N(¢))
is admitted by the colouring from Example 5| Thus this pair is in L(¢).

Before we explain how to compute these sets, observe how it solves our prob-
lem.

Lemma 40. Let r be a root of T'. Then the graph G is parity colourable with k
colours if and only if L(r) contains some pair (M(r),N(r)) such that N(r) does
not contain the zero parity vector.

Proof. The set LL(r) contains all pairs (M(r),N(r)) admitted by some colouring.
Since every colouring using k colours admits some such pair, L(r) contains all
pairs (M.(r), N.(r)) for all such colourings. By Lemma [34] a colouring ¢ of G is
proper if and only if N.(r) does not contain the zero parity vector. Thus there
exists a parity vertex colouring if and only if () contains some pair (M(r), N(r))
such that N(r) does not contain the zero parity vector.]

We now describe the dynamic programming on I' computing the sets L(%)
for every node t. We proceed from leaves to root and we use the procedures for
computing sets M, N from the algorithm verifycolouring.

1. Leaf node. Suppose that ¢ is a leaf node. Thus X, is empty. Hence there
is no path-partition of ¢, nor an evaluated path-partition of ¢. Therefore
M(t) = (0, and every colouring admits M(¢).

For every colouring ¢ of G it holds that N.(t) = (. Thus N(¢) = 0.
Observe that every colouring admits N(¢). Therefore L(t) = {(0,0)}.

2. Forget node. Suppose that t is a forget node with a son ¢’. We will show
that IL(¢) contains exactly the pairs (M(¢),N(¢)) such that (M(t),N(t)) are
computed from some (M(¢'), N(#')) € L(¢') by the procedure for forget node
in the algorithm verifycolouring (every set M and N of ¢ is computed
from (M(t"), N(t'))).

Let (M(t),N(t)) € L(t). There exists a colouring ¢ of G ad-
mitting (M(¢),N(¢)). Thus (M(¢),N(¢)) = (ML.(¢),N.(t)) and also
(ML.(t'),N.(t')) € L(t'). Moreover, the algorithm verifycolouring implies
that (M. (t),N.(¢)) can be computed from (M.(¢'), N.(#')) and the colouring
of Xy. But according to Lemma [39] the colouring of X; is determined by
M(#'). Thus we can compute (M,(t), N.(¢)) just from (M. (t'), N.(t')).

On the other hand, let (M(#'),N(¢')) € L(#'). There exists a colour-
ing ¢ of G admitting (M(¢'),N(¢')). Thus (M(¢'),N(¢')) = (M.(t"), N.(t'))
and also (M,(t),N.(t)) € L(t). By the same argument as before we see
that (ML.(¢),N.(¢)) can be computed from (M, (t'),N.(¢')) by the algorithm
verifycolouring.

3. Introduce edge node. Suppose that ¢ is an introduced edge node with
a son t'. By the same argument as for the forget node, we see that IL(¢)
contains exactly the pairs (M(¢),N(¢)) such that (M(t),N(¢)) are computed
from some (M(#'),N(t')) € L(#') by the procedures for introduced edge node
in the algorithm verifycolouring.

48

4. Introduce vertex node. Suppose that ¢ is an introduced vertex node
with a son ¢’ such that the vertex v is introduced in t. We can compute
the set L(¢) similarly as before. The only difference is that (M(t'), N(¢'))
from L(t') is not sufficient to compute some (M(t),N(¢)) from L(¢). We
additionally need the colour of v. Thus L(¢) contains exactly the pairs
(M(t),N(t)) such that (M(¢), N(¢)) are computed from some (M(t'),N(¢')) €
L(#") and some colour of v by the procedure for introduced vertex node in
the algorithm verifycolouring.

5. Join node. Suppose that ¢ is a join node with sons ¢, 5. We will show that
IL(t) contains exactly the pairs (M(t), N(¢)) such that (M(t), N(¢)) are com-
puted by the procedure for a join node in the algorithm verifycolouring
from some (M(#1),N(¢;)) € L(¢;) and some (M(t3),N(t3)) € L(ts) such
that the corresponding colours of X; are the same (by Lemma 39| they are
uniquely determined).

Let (M(t),N(¢t)) € L(t). There exists a colouring ¢ of G; ad-
mitting (M(¢),N(¢)). Thus (M(¢),N(¢)) = (ML.(¢),N.(t)) and also
(M(t1),N.(t1)) € L(t1) and (M.(¢2),N.(t2)) € L(t2). Moreover, the algo-
rithm verifycolouring implies that (M,.(¢),N.(¢)) can be computed from
(ML, (1), Ne(t1)), (M, (t2), N.(t2)) and the colouring of X;. But according to
Lemma 39| this the colouring of X, is determined by M.(¢;). Thus we can
compute (M, (t),N.(t)) from (ML.(¢;),N.(¢1)) and (M,(t2), N.(t2)) without
knowing the actual colouring c.

On the other hand, let (M(¢1),N(¢1)) € L(¢1) and (M(t2),N(t2)) € L(t2)
be such that the corresponding colourings of X, are the same. There ex-
ists a colouring ¢; of Gy, admitting (M(¢;),N(¢;)) and a colouring ¢y of
G, admitting (M(ts), N(¢2)). These colourings are the same on X;. More-
over, the colourings c¢;, ¢y can be combined together (because they are
same on V(Gy) N V(Gy) = Xi) to obtain a colouring ¢ of G;. Thus
(M(11),N(t1) = (Mo(t), No(tr) and (M), N(t)) = (Me(t2), No(t2))
Then there exists (M.(¢),N.(¢)) € L(¢t) and we can compute it by the
procedure for a join node in the algorithm verifycolouring just from
(M.(t1),N.(t1)) and (M(¢2), N.(t2)) (without knowing the colouring c).

Proof of Theorem [3(We are given a graph G and we want to check if there exists
a parity vertex colouring c using k colours. Let n be the size of G and tw be the
treewidth of G' (we do not know it yet). We can find the treewidth of G and a tree
decomposition of width tw in time tw°®) .n by applying Theorem [29| for integers
from 1 until we find a decomposition (thus, at most until ¢w). Theorem [29 does
not give any bound on the number of nodes in the returned decomposition, but
from the running time we know it is in tw®®) . n. Then by Lemma ﬁ we can
find a nice tree decomposition I' = (T, { X; }scv (1)) of width tw having O(tw - n)
nodes in time O(tw? - tw®®™) . n) = tw®™) . n. Let r be the root of 7.

Now for every node t of T' we compute the set L(¢) by the dynamic program-
ming explained above. By Lemma , GG has a parity vertex colouring if L(r)
contains a pair (M(r),N(r)) such that N(r) does not contain the zero parity vec-
tor. We can easily check that. It remains to estimate the running time of the
dynamic programming.

For each node t of T, there are at most (tw + 1) - (tw+2)* path-partitions,
and each evaluation of a path-partition and of a processed path can have at most

tw+1

49

22" distinct values. Hence for each node the number of distinct pairs (M(t), N(t))
and thus the size of L(¢) is at most (22°)1+Hw+1™"(wt2)® Ty our dynamic ap-
proach we always generate L(t) from L of the sons of ¢ and from all the possible
colourings of at most one vertex . Each node has at most 2 sons, so to compute
LL(t) we go through at most k-(22°)2+2(tw+ D)™ -(twt+2)? compinations of evaluations
of its sons and a colour of some node. Possibly (in a join node) we need to verify
that the combinations satisfy some condition. It can clearly be done polynomi-
ally with the size of evaluations, thus polynomially with (22")2F2tw1 " (tw+2)?
For each such combination we apply a part of the algorithm verifycolouring
that runs in time tw®®) . 20() Thus the total running time for each node is
definitely in (22°) ™ " Since there are O(tw - n) nodes, the total running
of the algorithm is in (22k)tw+1o(m+l) -n including the construction of the decom-
position I'. Therefore the problem ODDCOLOURING(G,k) is FPT with respect
to the number of colours £ and the treewidth of G.

O

50

4. Relations to other types of
colourings

In this chapter we decribe several related colourings of graphs. We present several
known results about them that are interesting in the context of the parity vertex
colouring and we discuss if the results in this paper hold for the other colourings
as well, or alternatively, if the algorithms we designed can be modified for the
other colourings.

In this section it would be ambiguous to call the parity vertex colouring just
as colouring. Thus for clarity, we always specify the type of each colouring.

4.1 Vertex colourings

We start with reminding the “standard” proper vertex colouring.

Definition 37. Let G be a graph. A proper vertex colouring of G is a colouring
of vertices of G such that no pair of adjacent vertices have the same colour. The
chromatic number of G (denoted by x(G)) is the minimal number of colours in
a proper vertex colouring of G.

We now present two other colourings that are usually studied together with
the parity vertex colouring.

Definition 38. Let G be a graph. A unique maximum colouring of G is a colour-
ing of vertices of G such that for every path P in G the maximal colour used on P
occurs exactly once on P. The unique maximum chromatic number of G (denoted
by Xum(G)) is the minimal number of colours in a unique mazimum colouring of

G.
This colouring is alternatively known as vertex ranking.

Definition 39. Let G be a graph. A conflict free colouring of G is a colouring
of vertices of G, such that for every path P in G there exists a colour used on P
that occurs exactly once on P. The conflict free chromatic number of G (denoted
by Xcr(G)) is the minimal number of colours in a conflict free colouring of G.

Let us first order these colourings in a chain of generality.

Lemma 41 ([6]). Let G be a graph. Then every unique mazimum colouring of
G is a conflict free colouring. FEvery conflict free colouring is a parity vertex
colouring. And every parity vertex colouring is a proper vertex colouring. Thus

Xum(G) 2 Xep(G) > xp(G) > x(G).

Proof. Every unique maximum colouring of GG contains for every path P of G a
colour used once on P (the maximal colour). Thus it is a conflict free colouring.

Every conflict free colouring of G contains for every path P of G a colour
used once (thus odd number of times) on P. Therefore the path P is not a parity
path. Hence the colouring is a parity vertex colouring.

In every parity vertex colouring of G every path of length 2 (thus every pair
of adjacent vertices) has to contain two different colours. Thus the colouring is a
proper vertex colouring. O

51

Let us first briefly discuss that all of these chromatic numbers may differ.
It is known that the conflict free chromatic number can be smaller than the
unique maximum (e.g. Cheilaris et al. [6] have shown that x.r(B7) < 6 and that
Xum(B7) = T). Since every tree is bipartite, Lemma[d] gives an example of a graph
with the higher parity vertex chromatic number than the chromatic number. It
remains to show that the conflict free chromatic number may differ from the
parity vertex chromatic number. We show that it differs for By. By Lemma [4]
Xp(Bs) = 3. Thus, it suffices to show that x.r(Bs) > 3.

Lemma 42. x.s(B,) = 4.

Proof. Since B, contains P; as a subgraph, Lemma (1| together with Lemma
implies that x.f(Bs) > 3. It remains to show that there is no conflict free
colouring of B, using 3 colours.

Suppose that such colouring exists. Without any loss of generality, let 1 be a
colour of the root r of the tree Bs. Let X be one of the Bs subtrees connected to
r. Since X is a copy of Bs, it contains P5 as a subgraph. Thus by Lemma [1] and
Lemma [41] X has at least three colours. Thus in our colouring it is coloured by
exactly three colours. Let B be one of the branches of X that has the colour 1
used on it. If there were only two colours used on B, the path composed of B and
r would use only 2 colours. That is not possible, thus there are 3 colours used
on B. Similarly there exists a branch B’ in the second Bj subtree connected to
r such that there are three colours used on B’. We can connect B’, r, and B to
obtain a path that has each colour used at least twice on it. Thus we obtained a
contradiction and there is no conflict free colouring of B, using 3 colours.]

Lemma implies that every upper bound on the parity vertex chromatic
number is an upper bound on the chromatic number, and more interestingly
every lower bound on the parity vertex chromatic number is a lower bound on
the conflict free and the unique maximum chromatic numbers.

Therefore we immediately obtain a version of Theorem [12] and Theorem [13]

Corollary 43. For every n > 2 and every subdivision B* of By, x.f(B*) > v/n.

Corollary 44. For every n > 2 and every binary tree B on n vertices, x.f(B) >

vlogn.

Corollaries [43| and [44] hold also for the unique maximum chromatic number,
but for this chromatic number better bounds exist. Specifically, Cheilaris et al. [6]
showed that the unique maximum chromatic number of a complete binary tree
with d layers is d.

Lemma 41| additionally implies that every upper bound on the unique maxi-
mum or the conflict free chromatic number is also an upper bound on the parity
vertex chromatic number. We use this and another known results to present two
bounds improving Lemma [3] for certain classes of trees.

Theorem 45 ([6]). For the sequence of complete binary trees, {B;}™,, the limit
of W is at least log 3.

From this we immediately obtain the following corollary.

52

Corollary 46. For the sequence of complete binary trees, {B;}™,, the limit of
ﬁ is at least log 3.

In other words, x,(B;) < m as ¢ tends to infinity.
Another interesting upper bound on the parity vertex chromatic number was

proved by Gregor and Skrekovski [10]. They proved a bound for binomial trees.

Theorem 47 ([10]). For every n the binomial tree Bi, of order n has a parity
vertex colouring with [2%53] colours. Thus x,(Bi;) < [2%3].

It is worth mentioning that Theorems 5] and [47] were proved by explicitly
constructing the colourings.

4.1.1 Complexity of computing the unique maximum and
the conflict free chromatic numbers

The problem of computing the unique maximum chromatic number of general
graphs is known to be NP-complete (see e.g. Bodlaender et al. [2]). This implies
that unlike parity chromatic colouring, checking if a colouring is proper can be
done in polynomial time.

Generally, the problem of computing the unique maximum chromatic number
has been already intensively studied and there are several efficient algorithms solv-
ing this problem for certain classes of graphs. For example, Bodlaender et al. [2]
proved that there exists a polynomial algorithm finding the conflict free chromatic
number for graphs with bounded treewidth.

On the other hand, even checking if a colouring is a conflict free colouring is
known to be coNP-complete ([5]) just like the same problem for the parity vertex
colouring. Thus it make sense to adjust the algorithms presented in Sections [2{and
to work with a conflict free colouring instead of a parity vertex colouring. The
algorithm FindColouring(G,k) presented in Section can be adjusted very
easily. The only difference is in checking if a coloured subset of path-induced
vertices is coloured properly. Instead of checking if some colour is used odd
number of times on a given subset of vertices, we check if some colour is used
exactly once.

It takes more work to change the other algorithms. The general idea is to use
different vectors for paths than the parity vectors. These vectors of paths should
remember for each colour if it is not used, used once, or used at least twice on
the path. Then we can add vectors of two disjoint paths together in a natural
way. We need to be more carefull to add vectors of two intersecting paths, but if
we know the colours of intersecting vertices, it is easy to see how to do it. Also
a vector of a “wrongly” coloured path is not the zero vector, but a vector where
every colour is used at least twice or not at all. Hence we can work with these
vectors similarly as we worked with parity vectors. If we were more precise, we
believe we could prove the following conjecture using this approach.

Conjecture 2. The problem of checking if a graph G has a conflict free colouring
using k colours is fived-parameter tractable with respect to k together with the
treewidth of G.

93

4.2 Parity edge colouring

In this section we describe the edge variant of parity colourings and compare
known results with the vertex version.

Definition 40. Let G be a graph. A parity edge colouring of G is a colouring of
edges of G such that there exists no path P in G with even usage of every colour
on the edges of P. The parity edge chromatic number of G (denoted by x;,(G))
is the minimal number of colours in a parity edge colouring of G.

It is easy to see that a parity vertex colouring of P, corresponds to a parity
edge colouring of P,,;. Thus by Lemma [l| we get the following, already known,
corollary.

Corollary 48 ([4]). For every n > 2, x,(P,) = [log(n —1)] + 1.

But that is the end of similarities. Even for cycles the vertex and the edge
parity chromatic numbers are different, as the Lemma [2| and the following result
of Bunde et al. [4] shows.

Lemma 49 ([4]). For every even n, x,(C,) = [log(n)]. For every odd n,
Xp(Cn) = [logn] + 1.

More interestingly, a parity edge colouring of trees has an interesting relation
to subgraphs of @Q,,.

Theorem 50 ([4]). A tree T embeds in the k-dimensional hypercube Qy, if and
only if x;,(T) < k.

This yields an interesting lower bound on the parity edge chromatic number.
Corollary 51 ([4]). If G is a connected graph on n vertices, then x;,(G) > [logn].

When we compare it with Lemma [3, we get an interesting inequality between
the two parity colourings of trees.

Corollary 52. For every tree T' on n vertices, x,(T) < x;,(T) + 1.

Proof. By Lemma [3| we have x,(T) < |logn| + 1. And by Corollary [51] we have
Xp(T') > [logn]. Since [logn| + 1 = [log (n + 1)], we see that

Xp(T) < [logn] +1 = [log (n+1)] < [logn] +1 < x,(T) + 1.

o4

Conclusion

In this thesis we continued the study of the parity vertex colouring. We have
defined a new class of coloured graphs, safflowers. With safflowers we have im-
proved the lower bound on the parity vertex chromatic number of subdivisions of
complete binary trees by showing that for every subdivison B* of B,, (n > 1) it
holds that x,(B*) > /n. We believe that every properly coloured subdivision of
a complete binary tree contains even larger saflower and consequently the lower
bound can be further improved. We have also used this bound to show that for
every binary tree B with n vertices (n > 1) it holds that x,(B) > /logn.

We find it striking that we know the exact parity vertex chromatic number
only for the simplest classes of graphs, like paths and cycles. Even for certain
classes of trees the best upper bounds (Lemma , Corollary , and Theorem
are asymptotically quadratically higher than the best lower bounds (Theorem
and Theorem . Therefore it would be interesting to either find better colour-
ings or prove that there are none.

From the computational point of view we have designed algorithms for trees
and for general graphs that can be easily implemented and used for finding the
parity chromatic number of small graphs. Our result that the computation of
the parity vertex chromatic number is FPT with respect to the treewidth of
the input graph and the actual chromatic number has probably only theoretical
impact since even for small parameters the running time seems to be too high.
What we consider to be an interesting open problem is whether there exist some
approximation algorithms computing the parity vertex chromatic number that
run in some reasonable, preferably polynomial, time.

We have discussed the possibility of applying the presented results on the
other colourings in Section [} Apart from Conjecture 2] we find interesting the
question how much smaller the parity vertex chromatic number can be compared
to the conflict free chromatic number of the same graph. We have shown that
Xp(Bi1) + 1 = xcf(Ba), but we do not even know if there is a graph G such
that x,(G) + 2 > x.#(G). Moreover, every presented upper bound on the parity
chromatic number (Lemma (3| Corollary , and Theorem was proved by
finding a conflict free colouring. Thus, there is so far no example how a parity
vertex colouring that is not a conflict free colouring should be designed.

Another interesting question is whether there is some deeper relation between
the edge and the vertex parity colourings. For example, for paths the edge colour-
ing is equivalent to the vertex colouring of the corresponding line graph. Unfor-
tunately, this approach fails even for cycles, although the line graph is the same
as the original graph, because unlike vertices we can not put all edges on a single
path. Maybe there is some other transformation of graphs that maps one of these
problems to the second one, or some other relation can be found. This would be
interesting since the edge variant has been more studied and especially for trees
there are better known results.

95

Bibliography

[1]

2]

[10]

[11]

[12]

[13]

[14]

H. L. Bodlaender. A linear-time algorithm for finding tree-decompositions
of small treewidth. SIAM Journal on Computing, 25:1305-1317, 12 1996.

H. L. Bodlaender, J. S. Deogun, K. Jansen, T. Kloks, D. Kratsch, H. Miiller,
and Z. Tuza. Rankings of graphs. SIAM Journal on Discrete Mathematics,
11:168-181, 1998.

P. Borowiecki, K. Budajova, S. Jendrol’, and S. Krajci. Parity vertex colour-
ing of graphs. Discussiones Mathematicae Graph Theory, 31:183-195, 2011.

D. P. Bunde, K. Milans, D. B. West, and H. Wu. Parity and strong parity
edge-coloring of graphs. Congressus Numerantium, 187:193-213, 2007.

P. Cheilaris and G. Téoth. Graph unique-maximum and conflict-free colorings.
Journal of Discrete Algorithms, 9:241-251, 2011.

P. Cheilaris, B. Keszegh, and D. Palvolgyi. Unique-maximum and conflict-
free colouring for hypergraphs and tree graphs. SIAM Journal on Discrete
Mathematics, 27:1775-1787, 2013.

B. Courcelle and J. Engelfriet. Graph structure and monadic second-order
logic: A language theoretic approach. Cambridge University Press, 2012.

M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh. Parameterized Algorithms. Springer, London,
2015.

R. G. Downey and M. R. Fellows. Fixed-parameter tractability and com-
pleteness i: Basic results. SIAM Journal on Computing, 24(4):873-921, 1995.

P. Gregor and R. Skrekovski. Parity vertex colorings of binomial trees. Dis-
cussiones Mathematicae Graph Theory, 32:177-180, 2012.

H.-C. Hsu and G. J. Chang. Parity and strong parity edge-colorings of
graphs. Journal of Combinatorial Optimization, 24(4):427-436, 2012.

F. T. Leighton. Introduction to Parallel Algorithms and Architectures: Array,
Trees, Hypercubes. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 1992.

J. W. H. Liu. The role of elimination trees in sparse factorization. SIAM J.
Matrixz Analysis and Applications, 11:134-172, 01 1990.

A. Sen, H. Deng, and S. Guha. On a graph partition problem with application
to vlsi layout. Information Processing Letters, 43(2):87-94, 1992.

o6

List of Figures

(1.1 A parity vertex colouring of B4 with three colours.|. 7
1.2 A parity vertex colouring of 753 with four colours.|. 8
1.3 An example of a graph from F and a safflower obtained from it . 11
(1.4 A parity vertex colouring of ()5 with 15 colours.] 16
[3.1 A tree with its tree decomposition.| 28
[3.2 A graph with its tree decomposition and its nice tree decomposition.| 29
[3.3 A path-partition admitted by a set of paths.| 35
[3.4 An example of a set of pair-wise disjoint paths in G; where ¢ is a [

joinnodel. L 40
[3.5 An example of a graph G' with its nice tree decomposition with a [

joinnode t.| 46

o7

	Introduction
	Preliminaries
	Bounds on the parity vertex chromatic number
	Properties of the parity chromatic number of paths, cycles, and trees
	Lower bound on the parity chromatic number of subdivisions of complete binary trees
	New sharp bound on the parity chromatic number of subdivisions of complete binary trees
	Lower bound on the parity chromatic number of binary trees
	Parity vertex colouring of Q5

	Complexity of computing the parity vertex chromatic number
	coNP - completeness
	Brute-force approach
	Algorithms for trees
	Verifying the correctness of a colouring
	Computing the parity chromatic number of trees

	Algorithms for graphs with bounded treewidth
	Introduction to parametrized complexity
	Courcelle's theorem
	FPT algorithm computing the parity chromatic number
	Verifying the correctness of a colouring using tree decompositions
	Computing the parity chromatic number using tree decompositions

	Relations to other types of colourings
	Vertex colourings
	Complexity of computing the unique maximum and the conflict free chromatic numbers

	Parity edge colouring

	Conclusion
	Bibliography
	List of Figures

