Zobrazit minimální záznam

Varianty problému obarvení
dc.contributor.advisorFiala, Jiří
dc.creatorLidický, Bernard
dc.date.accessioned2017-04-06T11:33:25Z
dc.date.available2017-04-06T11:33:25Z
dc.date.issued2007
dc.identifier.urihttp://hdl.handle.net/20.500.11956/13262
dc.description.abstractV předložené práci studujeme seznamové barvení rovinných grafů. Seznamové barvení je varianta problému barvení grafu, kde každý vrchol má přidělený svůj vlastní seznam možných barev. Říkáme, že graf je k-vybíravý, je-li možnée nalézt dobré obarvení pokaždé, když všechny seznamy obsahují alespoň k barev. Je známo, že každý rovinný graf bez trojúhelníků je 4-vybíravý a každý rovinný bipartitní graf (t.j. bez lichých cyklů) je 3-vybíravý. Práce ukazuje postačující podmínky pro 3-vybíravost rovinných grafů bez trojúhelníků s omezeným výskytem krátkých cyklů.cs_CZ
dc.description.abstractThe choice number is a graph parameter that generalizes the chromatic number. In this concept vertices are assigned lists of available colors. A graph is k-choosable if it can be colored whenever the lists are of size at least k. It is known that every planar graph without triangles is 4-choosable and there is an example of a non-3-choosable planar graph without triangles. In this work we study the choice number of planar graph without triangles and other short cycles.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleVarianty problému obarveníen_US
dc.typediplomová prácecs_CZ
dcterms.created2007
dcterms.dateAccepted2007-09-11
dc.description.departmentKatedra aplikované matematikycs_CZ
dc.description.departmentDepartment of Applied Mathematicsen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId45592
dc.title.translatedVarianty problému obarvenícs_CZ
dc.contributor.refereeKráľ, Daniel
dc.identifier.aleph000866655
thesis.degree.nameMgr.
thesis.degree.levelmagisterskécs_CZ
thesis.degree.disciplineDiskrétní matematika a optimalizacecs_CZ
thesis.degree.disciplineDiscrete Mathematics and Optimizationen_US
thesis.degree.programInformaticsen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra aplikované matematikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Applied Mathematicsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csDiskrétní matematika a optimalizacecs_CZ
uk.degree-discipline.enDiscrete Mathematics and Optimizationen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enInformaticsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csV předložené práci studujeme seznamové barvení rovinných grafů. Seznamové barvení je varianta problému barvení grafu, kde každý vrchol má přidělený svůj vlastní seznam možných barev. Říkáme, že graf je k-vybíravý, je-li možnée nalézt dobré obarvení pokaždé, když všechny seznamy obsahují alespoň k barev. Je známo, že každý rovinný graf bez trojúhelníků je 4-vybíravý a každý rovinný bipartitní graf (t.j. bez lichých cyklů) je 3-vybíravý. Práce ukazuje postačující podmínky pro 3-vybíravost rovinných grafů bez trojúhelníků s omezeným výskytem krátkých cyklů.cs_CZ
uk.abstract.enThe choice number is a graph parameter that generalizes the chromatic number. In this concept vertices are assigned lists of available colors. A graph is k-choosable if it can be colored whenever the lists are of size at least k. It is known that every planar graph without triangles is 4-choosable and there is an example of a non-3-choosable planar graph without triangles. In this work we study the choice number of planar graph without triangles and other short cycles.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra aplikované matematikycs_CZ
dc.identifier.lisID990008666550106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV