Zobrazit minimální záznam

Integral representation theorems in noncompact cases
dc.contributor.advisorLukeš, Jaroslav
dc.creatorKraus, Michal
dc.date.accessioned2017-04-06T11:37:43Z
dc.date.available2017-04-06T11:37:43Z
dc.date.issued2007
dc.identifier.urihttp://hdl.handle.net/20.500.11956/13282
dc.description.abstractClassical Choquet's theory deals with compact convex subsets of locally convex spaces. This thesis discuss some aspects of generalization of Choquet's theory for a broader class of sets, for example those which are assumed to be only closed and bounded instead of compact. Because Radon measures are usually defined for locally compact topological spaces, and this is not the case of the closed unit ball in a Banach space of infinite dimension, there are used the so called Baire measures in this setting. This thesis particularly deals with the question of existence of resultants of these measures, with the properties of the resultant map, with the analogy of Bauer's characterization of extreme points and with some other concepts known from compact theory. By using some examples we show that many of these theorems doesn't hold in noncompact setting. We also mention forms of these theorems which can be proved.en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleIntegrální reprezentace v nekompaktním případěcs_CZ
dc.typediplomová prácecs_CZ
dcterms.created2007
dcterms.dateAccepted2007-09-13
dc.description.departmentKatedra matematické analýzycs_CZ
dc.description.departmentDepartment of Mathematical Analysisen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId44634
dc.title.translatedIntegral representation theorems in noncompact casesen_US
dc.contributor.refereeMalý, Jan
dc.identifier.aleph000840839
thesis.degree.nameMgr.
thesis.degree.levelmagisterskécs_CZ
thesis.degree.disciplineMatematická analýzacs_CZ
thesis.degree.disciplineMathematical Analysisen_US
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra matematické analýzycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Mathematical Analysisen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematická analýzacs_CZ
uk.degree-discipline.enMathematical Analysisen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.enClassical Choquet's theory deals with compact convex subsets of locally convex spaces. This thesis discuss some aspects of generalization of Choquet's theory for a broader class of sets, for example those which are assumed to be only closed and bounded instead of compact. Because Radon measures are usually defined for locally compact topological spaces, and this is not the case of the closed unit ball in a Banach space of infinite dimension, there are used the so called Baire measures in this setting. This thesis particularly deals with the question of existence of resultants of these measures, with the properties of the resultant map, with the analogy of Bauer's characterization of extreme points and with some other concepts known from compact theory. By using some examples we show that many of these theorems doesn't hold in noncompact setting. We also mention forms of these theorems which can be proved.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzycs_CZ
dc.identifier.lisID990008408390106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV