Zobrazit minimální záznam

Temporal-spatial point processes
dc.contributor.advisorBeneš, Viktor
dc.creatorKaluža, Jan
dc.date.accessioned2017-04-06T11:38:48Z
dc.date.available2017-04-06T11:38:48Z
dc.date.issued2007
dc.identifier.urihttp://hdl.handle.net/20.500.11956/13287
dc.description.abstractThe thesis deals with Cox point processes driven by processes of Ornstein-Uhlenbeck (OU) type. Processes of OU type are derived from Lévy processes. A formula for cross-correlation function of multivariate Cox point processes is derived in nonstationary and stationary case. The calculations are illustrated on an example of a process derived from inverse Gaussian Lévy process. Nonlinear filtering problem for Cox point processes driven by processes of OU type is studied as well, using a stochastic simulation based on densities of point processes and Markov chain Monte Carlo (MCMC) method. This procedure is extended for Cox point processes based on infinite activity Lévy processes. The procedure is demonstrated in detail for a case of Gamma Lévy process.en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleČaso-prostorové bodové procesycs_CZ
dc.typediplomová prácecs_CZ
dcterms.created2007
dcterms.dateAccepted2007-09-17
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId44138
dc.title.translatedTemporal-spatial point processesen_US
dc.contributor.refereePawlas, Zbyněk
dc.identifier.aleph000939636
thesis.degree.nameMgr.
thesis.degree.levelmagisterskécs_CZ
thesis.degree.disciplinePravděpodobnost, matematická statistika a ekonometriecs_CZ
thesis.degree.disciplineProbability, mathematical statistics and econometricsen_US
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csPravděpodobnost, matematická statistika a ekonometriecs_CZ
uk.degree-discipline.enProbability, mathematical statistics and econometricsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.enThe thesis deals with Cox point processes driven by processes of Ornstein-Uhlenbeck (OU) type. Processes of OU type are derived from Lévy processes. A formula for cross-correlation function of multivariate Cox point processes is derived in nonstationary and stationary case. The calculations are illustrated on an example of a process derived from inverse Gaussian Lévy process. Nonlinear filtering problem for Cox point processes driven by processes of OU type is studied as well, using a stochastic simulation based on densities of point processes and Markov chain Monte Carlo (MCMC) method. This procedure is extended for Cox point processes based on infinite activity Lévy processes. The procedure is demonstrated in detail for a case of Gamma Lévy process.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
dc.identifier.lisID990009396360106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV