dc.contributor.advisor | Málek, Josef | |
dc.creator | Holeček, Martin | |
dc.date.accessioned | 2017-04-06T11:40:03Z | |
dc.date.available | 2017-04-06T11:40:03Z | |
dc.date.issued | 2007 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/13293 | |
dc.description.abstract | We consider steady flows of homogenous incompressible fluid described by generalized Stokes system. We study two models, first with shear-rate dependent viskosity and second with pressure and shear-rate dependent viskosity. We investigate internal flows in bounded domains subject to Navier's boundary condition. First, to show the difference, we present proofs of existence and uniqueness of solutions for both systems. Then we investigate, what are the assumptions allowing to take the fluid mechanics limit, as Navier's boundary conditions approximate first no-slip and then (perfect) slip boundary conditions. Finally, we consider for simplicity specially periodic problem and show regularity result (integrability of the second derivatives of the velocity and the first derivatives of the pressure). | en_US |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.title | Zobecněné Stokesovy systémy studované z pohledu teoretické analýzy | cs_CZ |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2007 | |
dcterms.dateAccepted | 2007-09-25 | |
dc.description.department | Matematický ústav UK | cs_CZ |
dc.description.department | Mathematical Institute of Charles University | en_US |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 43730 | |
dc.title.translated | Generalized Stokes systems - theoretical analysis approach | en_US |
dc.contributor.referee | Pokorný, Milan | |
dc.identifier.aleph | 000939409 | |
thesis.degree.name | Mgr. | |
thesis.degree.level | magisterské | cs_CZ |
thesis.degree.discipline | Matematické a počítačové modelování ve fyzice a v technice | cs_CZ |
thesis.degree.discipline | Mathematical and Computer Modelling in Physics and Engineering | en_US |
thesis.degree.program | Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Matematický ústav UK | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Mathematical Institute of Charles University | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Matematické a počítačové modelování ve fyzice a v technice | cs_CZ |
uk.degree-discipline.en | Mathematical and Computer Modelling in Physics and Engineering | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Velmi dobře | cs_CZ |
thesis.grade.en | Very good | en_US |
uk.abstract.en | We consider steady flows of homogenous incompressible fluid described by generalized Stokes system. We study two models, first with shear-rate dependent viskosity and second with pressure and shear-rate dependent viskosity. We investigate internal flows in bounded domains subject to Navier's boundary condition. First, to show the difference, we present proofs of existence and uniqueness of solutions for both systems. Then we investigate, what are the assumptions allowing to take the fluid mechanics limit, as Navier's boundary conditions approximate first no-slip and then (perfect) slip boundary conditions. Finally, we consider for simplicity specially periodic problem and show regularity result (integrability of the second derivatives of the velocity and the first derivatives of the pressure). | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Matematický ústav UK | cs_CZ |
dc.identifier.lisID | 990009394090106986 | |