dc.contributor.advisor | Cipra, Tomáš | |
dc.creator | Jonáš, Petr | |
dc.date.accessioned | 2017-04-10T10:49:08Z | |
dc.date.available | 2017-04-10T10:49:08Z | |
dc.date.issued | 2008 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/14888 | |
dc.description.abstract | In the presented work vector autoregression (VAR) models of finite order are examined. The main part is concerned with stationary VAR processes, whose basic characteristics, various methods of coefficient matrices estimation including consistency conditions are derived. We discuss the point and interval forecasts based on VAR models as well. We also describe integrated processes, principle of cointegration and VEC models which are appropriate modifications of VAR models for cointegration processes. The work also pays attention to Granger's and multi-step causality in the context of VAR models. In the final chapter impulse response analysis and forecast error variance decomposition are presented. Everything is supplemented by illustrative examples on real data. | en_US |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.title | Vektorové autoregresní modely | cs_CZ |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2008 | |
dcterms.dateAccepted | 2008-05-12 | |
dc.description.department | Department of Probability and Mathematical Statistics | en_US |
dc.description.department | Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 44838 | |
dc.title.translated | Vector Autoregressive Models | en_US |
dc.contributor.referee | Lachout, Petr | |
dc.identifier.aleph | 000971503 | |
thesis.degree.name | Mgr. | |
thesis.degree.level | magisterské | cs_CZ |
thesis.degree.discipline | Probability, mathematical statistics and econometrics | en_US |
thesis.degree.discipline | Pravděpodobnost, matematická statistika a ekonometrie | cs_CZ |
thesis.degree.program | Matematika | cs_CZ |
thesis.degree.program | Mathematics | en_US |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Probability and Mathematical Statistics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Pravděpodobnost, matematická statistika a ekonometrie | cs_CZ |
uk.degree-discipline.en | Probability, mathematical statistics and econometrics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.en | In the presented work vector autoregression (VAR) models of finite order are examined. The main part is concerned with stationary VAR processes, whose basic characteristics, various methods of coefficient matrices estimation including consistency conditions are derived. We discuss the point and interval forecasts based on VAR models as well. We also describe integrated processes, principle of cointegration and VEC models which are appropriate modifications of VAR models for cointegration processes. The work also pays attention to Granger's and multi-step causality in the context of VAR models. In the final chapter impulse response analysis and forecast error variance decomposition are presented. Everything is supplemented by illustrative examples on real data. | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.identifier.lisID | 990009715030106986 | |