dc.contributor.advisor | Vejchodský, Tomáš | |
dc.creator | Kubásek, Petr | |
dc.date.accessioned | 2017-04-11T11:51:17Z | |
dc.date.available | 2017-04-11T11:51:17Z | |
dc.date.issued | 2008 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/16129 | |
dc.description.abstract | Cílem této práce je porovnat řízení hp-adaptivního procesu pomocí referenčního řešení a různých aposteriorních odhadů chyby. Tyto přístupy jsou porovnávány z hlediska globální diskretizační chyby a potřebného počtu stupňů volnosti. Konkrétně se zabýváme explicitními residuálními odhady, implicitními residuálními odhady Dirichletova a Neumannova typu a hierarchickými odhady. Všechny odhady jsou v práci podrobně odvozeny včetně jejich nejvýznamnějších vlastností. Jednotlivé přístupy jsou srovnávány pomocí numerických experimentů. Na jejich základě lze ríci, že nejlepších výsledků dosahuje adaptivita řízená pomocí referenčního řešení společně s implicitním Dirichletovým odhadem. Referenční řešení se zdá být nejspolehlivější metodou zatímco implicitní Dirichletův odhad je, s výjimkou některých případů, nejrychlejší. | cs_CZ |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.title | Výpočetní srovnání hp-adaptivních přístupů | cs_CZ |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2008 | |
dcterms.dateAccepted | 2008-06-05 | |
dc.description.department | Katedra numerické matematiky | cs_CZ |
dc.description.department | Department of Numerical Mathematics | en_US |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 46224 | |
dc.title.translated | Computational comparison of hp-adaptive approaches | en_US |
dc.contributor.referee | Feistauer, Miloslav | |
dc.identifier.aleph | 001176760 | |
thesis.degree.name | Mgr. | |
thesis.degree.level | navazující magisterské | cs_CZ |
thesis.degree.discipline | Numerická a výpočtová matematika | cs_CZ |
thesis.degree.discipline | Numerical and computational mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
thesis.degree.program | Mathematics | en_US |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra numerické matematiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Numerical Mathematics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Numerická a výpočtová matematika | cs_CZ |
uk.degree-discipline.en | Numerical and computational mathematics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | Cílem této práce je porovnat řízení hp-adaptivního procesu pomocí referenčního řešení a různých aposteriorních odhadů chyby. Tyto přístupy jsou porovnávány z hlediska globální diskretizační chyby a potřebného počtu stupňů volnosti. Konkrétně se zabýváme explicitními residuálními odhady, implicitními residuálními odhady Dirichletova a Neumannova typu a hierarchickými odhady. Všechny odhady jsou v práci podrobně odvozeny včetně jejich nejvýznamnějších vlastností. Jednotlivé přístupy jsou srovnávány pomocí numerických experimentů. Na jejich základě lze ríci, že nejlepších výsledků dosahuje adaptivita řízená pomocí referenčního řešení společně s implicitním Dirichletovým odhadem. Referenční řešení se zdá být nejspolehlivější metodou zatímco implicitní Dirichletův odhad je, s výjimkou některých případů, nejrychlejší. | cs_CZ |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra numerické matematiky | cs_CZ |
dc.identifier.lisID | 990011767600106986 | |