Kolmost v Banachových prostorech
Orthogonality in Banach spaces
diplomová práce (OBHÁJENO)
![Náhled dokumentu](/bitstream/handle/20.500.11956/17290/thumbnail.png?sequence=7&isAllowed=y)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/17290Identifikátory
SIS: 45764
Kolekce
- Kvalifikační práce [11266]
Autor
Vedoucí práce
Oponent práce
Milota, Jaroslav
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Matematická analýza
Katedra / ústav / klinika
Katedra matematické analýzy
Datum obhajoby
22. 9. 2008
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Velmi dobře
V předložené práci studujeme vlastnosti kolmosti v Hilbertových prostorech a možnosti rozšíření definice na obecnější typ prostorů, Banachovy prostory. Zaměřujeme se hlavně na Birkhoff-Jamesovu kolmost a zkoumáme, které vlastnosti kolmosti z Hilbertových prostorů zůstaly zachovány, případně uvádíme protipříklady. Protože kolmost obecně není symetrická, je nutné rozlišovat pravé a levé vlastnosti. Pomocí Birkhoff-Jamesovy kolmosti lze rovněž ekvivalentně charakterizovat hladké a striktně konvexní Banachovy prostory. Dále se zabývámevlastnostmi ortogonální projekce v Hilbertových prostorech a jejich zobecněními pro Banachovy prostory. Zkoumáme projekce s normou rovnou jedné a projekce minimální.
In the present work we study properties of orthogonality in Hilbert spaces and possibilities of extending definition to more general type of spaces, Banach spaces. We concentrate mostly on Birkhoff-James orthogonality and investigate, which properties of Hilbert space orthogonality are still valid for Banach spaces, otherwise we provide counter-examples. As the orthogonality is generally not symmetric, we have to distinguish between right and left properties. We use Birkhoff-James orthogonality to characterize smooth and strictly convex Banach spaces. Then we study properties of Hilbert space orthogonal projection and its generalizations for Banach spaces.We study projections of norm equal one and minimal projections.