Zobrazit minimální záznam

Dynamical properties of continua
dc.contributor.advisorVejnar, Benjamin
dc.creatorKarasová, Klára
dc.date.accessioned2022-10-04T17:16:53Z
dc.date.available2022-10-04T17:16:53Z
dc.date.issued2022
dc.identifier.urihttp://hdl.handle.net/20.500.11956/175523
dc.description.abstractThis thesis investigates long-term topological behaviour of continuous self-maps or sets of continuous self-maps of metric spaces, mostly Peano continua. The first chapter is preparatory for the following two and summarize some properties of compact spaces with emphasis on Peano continua. In the second chapter, we give an overview of chaotic features and then we prove that for every Peano continuum X there exists a LEO self- map of X with a dense set of periodic points. In particular, such f is chaotic with respect to widely accepted Devaney' definition of chaos. The third chapter deals with topolog- ical fractals, we prove there a new sufficient condition under which a Peano space is a topological fractal, namely that any Peano continuum with uncountably many local cut- points is a topological fractal. We use this result to partially answer problems concerning regenerating fractals. 1en_US
dc.description.abstractV této práci vyšetřujeme dlouhodobý vývoj jednoho nebo více zobrazení metrického prostoru, zpravidla Peanova kontinua, do sebe z topologického hlediska. První kapitola je přípravou na dvě následující, shrneme v ní některé vlastnosti kompaktních prostorů se zvláštním důrazem na Peanova kontinua. Ve druhé kapitole se nejprve věnujeme znakům chaosu a poté dokážeme, že pro každé Peanovo kontinuum X existuje LEO zobrazení f : X → X, jehož množina periodických bodů je hustá. Takové f speciálně splňuje široce uznávanou Devaneyho definici chaosu. Třetí kapitola se zabývá topologickými fraktály. Dokážeme novou postačující podmínku, za které je Peanovo kontinuum topologickým fraktálem, a tou je nespočetně mnoho lokálních dělících bodů. Tento výsledek pak použi- jeme k částečnému zodpovězení otázek týkajících se regenerujících fraktálů. 1cs_CZ
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectdynamical system|continuum|continuous map|transitive mapen_US
dc.subjectdynamický systém|kontinuum|spojité zobrazení|tranzitivní zobrazenícs_CZ
dc.titleDynamické vlastnosti kontinuícs_CZ
dc.typediplomová prácecs_CZ
dcterms.created2022
dcterms.dateAccepted2022-09-06
dc.description.departmentDepartment of Mathematical Analysisen_US
dc.description.departmentKatedra matematické analýzycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId244061
dc.title.translatedDynamical properties of continuaen_US
dc.contributor.refereeBobok, Jozef
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineMathematical Structuresen_US
thesis.degree.disciplineMatematické strukturycs_CZ
thesis.degree.programMathematical Structuresen_US
thesis.degree.programMatematické strukturycs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra matematické analýzycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Mathematical Analysisen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematické strukturycs_CZ
uk.degree-discipline.enMathematical Structuresen_US
uk.degree-program.csMatematické strukturycs_CZ
uk.degree-program.enMathematical Structuresen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csV této práci vyšetřujeme dlouhodobý vývoj jednoho nebo více zobrazení metrického prostoru, zpravidla Peanova kontinua, do sebe z topologického hlediska. První kapitola je přípravou na dvě následující, shrneme v ní některé vlastnosti kompaktních prostorů se zvláštním důrazem na Peanova kontinua. Ve druhé kapitole se nejprve věnujeme znakům chaosu a poté dokážeme, že pro každé Peanovo kontinuum X existuje LEO zobrazení f : X → X, jehož množina periodických bodů je hustá. Takové f speciálně splňuje široce uznávanou Devaneyho definici chaosu. Třetí kapitola se zabývá topologickými fraktály. Dokážeme novou postačující podmínku, za které je Peanovo kontinuum topologickým fraktálem, a tou je nespočetně mnoho lokálních dělících bodů. Tento výsledek pak použi- jeme k částečnému zodpovězení otázek týkajících se regenerujících fraktálů. 1cs_CZ
uk.abstract.enThis thesis investigates long-term topological behaviour of continuous self-maps or sets of continuous self-maps of metric spaces, mostly Peano continua. The first chapter is preparatory for the following two and summarize some properties of compact spaces with emphasis on Peano continua. In the second chapter, we give an overview of chaotic features and then we prove that for every Peano continuum X there exists a LEO self- map of X with a dense set of periodic points. In particular, such f is chaotic with respect to widely accepted Devaney' definition of chaos. The third chapter deals with topolog- ical fractals, we prove there a new sufficient condition under which a Peano space is a topological fractal, namely that any Peano continuum with uncountably many local cut- points is a topological fractal. We use this result to partially answer problems concerning regenerating fractals. 1en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzycs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV