Investigating Large Language Models' Representations Of Plurality Through Probing Interventions
Zkoumání reprezentace plurálu ve velkých jazykových modelech prostřednictvím sondovacích intervencí
diplomová práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/175532Identifikátory
SIS: 248720
Kolekce
- Kvalifikační práce [11241]
Autor
Vedoucí práce
Oponent práce
Helcl, Jindřich
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Computer Science - Language Technologies and Computational Linguistics
Katedra / ústav / klinika
Ústav formální a aplikované lingvistiky
Datum obhajoby
2. 9. 2022
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Výborně
Klíčová slova (česky)
probing|interpretace|jazykový model|neuronová síťKlíčová slova (anglicky)
probing|interpretation|language model|neural networkTitle: Investigating Large Language Models' Representations Of Plurality Through Probing Interventions Author: Michael Hanna Institute: Institute of Formal and Applied Linguistics Supervisor: RNDr. David Mareček, Ph.D., Institute of Formal and Applied Linguistics Abstract: Large language models (LLMs) have become ubiquitous in natural language processing, but how exactly they process their input and arrive at good downstream task performance is still poorly understood. While much work has been done using probing to examine LLM internals, or behavioral studies, to determine LLMs' linguistic capabilities, these techniques are too weak to allow us to draw conclusions how LLMs process language. In this paper, I use both probing and causal intervention methods to investigate the question of subject-verb agreement with respect to the subject's plurality. I find that while probing reveals that subject plurality information is distributed throughout a sentence, causal interventions suggest that only information stored in linguistically relevant tokens is used. Probing interventions suggest that some but not all probes capture information in a way that reflects LLMs' usage thereof. Keywords: Interpretability, Probing, Natural Language Processing, Computational Linguistics