Zobrazit minimální záznam

Autoregresivní syntéza lidského 3D pohybu pomocí latentních diskrétních kódů
dc.contributor.advisorŠivic, Josef
dc.creatorWaltl, Jan
dc.date.accessioned2022-10-04T17:32:38Z
dc.date.available2022-10-04T17:32:38Z
dc.date.issued2022
dc.identifier.urihttp://hdl.handle.net/20.500.11956/175750
dc.description.abstractV této práci jsme představili novou metodu pro syntézu 3D animace pohybu člověka podmíněné na pevné množině akcí definující pohyb, například "běhání" nebo "předklon". Inspirování úspěchy metod pro generování obrázků z textu na základě diskrétních latentních reprezentacích, jsme úspěšně vyzkoušeli použití těchto metod v kontextu generování pohybu, což je v kontrastu s dosavadními příst upy využívající spojité latentní proměnné. Ve srovnání s dosavadní nejlepší metodou ACTOR, naše metoda není limitována délkou generovaných sekvencí a dokáže plynule navázat na vstupní startovní sekvenci. Autoregressivní generování je omezeno délkou kon textu, což zajišťuje rozumnou rychlost generování. Dále, díky učení ve dvou fázích, budoucí modely se mohou snadno pře dučit na větších datasetech bez označení kategorií a dotrénovat se na konkrétním úkolu. Naši metodu jsme vyhodnotili na UESTC dataset, v metriká ch překování dosavadní metodu ACTOR a generuje animace srovnatelné s datasetem.en_US
dc.description.abstractV této práci jsme představili novou metodu pro syntézu 3D animace pohybu člověka podmíněné na pevné množině akcí definující pohyb, například "běhání" nebo "předklon". Inspirování úspěchy metod pro generování obrázků z textu na základě diskrétních latentních reprezentacích, jsme úspěšně vyzkoušeli použití těchto metod v kontextu generování pohybu, což je v kontrastu s dosavadními příst upy využívající spojité latentní proměnné. Ve srovnání s dosavadní nejlepší metodou ACTOR, naše metoda není limitována délkou generovaných sekvencí a dokáže plynule navázat na vstupní startovní sekvenci. Autoregressivní generování je omezeno délkou kon textu, což zajišťuje rozumnou rychlost generování. Dále, díky učení ve dvou fázích, budoucí modely se mohou snadno pře dučit na větších datasetech bez označení kategorií a dotrénovat se na konkrétním úkolu. Naši metodu jsme vyhodnotili na UESTC dataset, v metriká ch překování dosavadní metodu ACTOR a generuje animace srovnatelné s datasetem.cs_CZ
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectmotion synthesis|deep learning|discrete representation|autoregressive generationen_US
dc.subjectsyntéza pohybu|hluboké učení|diskrétní reprezentace|autoregresivní generovánícs_CZ
dc.titleAutoregressive action-conditioned 3D human motion synthesis using latent discrete codesen_US
dc.typediplomová prácecs_CZ
dcterms.created2022
dcterms.dateAccepted2022-09-07
dc.description.departmentDepartment of Software and Computer Science Educationen_US
dc.description.departmentKatedra softwaru a výuky informatikycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId247608
dc.title.translatedAutoregresivní syntéza lidského 3D pohybu pomocí latentních diskrétních kódůcs_CZ
dc.contributor.refereeMirbauer, Martin
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineArtificial Intelligenceen_US
thesis.degree.disciplineUmělá inteligencecs_CZ
thesis.degree.programComputer Scienceen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra softwaru a výuky informatikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Software and Computer Science Educationen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csUmělá inteligencecs_CZ
uk.degree-discipline.enArtificial Intelligenceen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csV této práci jsme představili novou metodu pro syntézu 3D animace pohybu člověka podmíněné na pevné množině akcí definující pohyb, například "běhání" nebo "předklon". Inspirování úspěchy metod pro generování obrázků z textu na základě diskrétních latentních reprezentacích, jsme úspěšně vyzkoušeli použití těchto metod v kontextu generování pohybu, což je v kontrastu s dosavadními příst upy využívající spojité latentní proměnné. Ve srovnání s dosavadní nejlepší metodou ACTOR, naše metoda není limitována délkou generovaných sekvencí a dokáže plynule navázat na vstupní startovní sekvenci. Autoregressivní generování je omezeno délkou kon textu, což zajišťuje rozumnou rychlost generování. Dále, díky učení ve dvou fázích, budoucí modely se mohou snadno pře dučit na větších datasetech bez označení kategorií a dotrénovat se na konkrétním úkolu. Naši metodu jsme vyhodnotili na UESTC dataset, v metriká ch překování dosavadní metodu ACTOR a generuje animace srovnatelné s datasetem.cs_CZ
uk.abstract.enV této práci jsme představili novou metodu pro syntézu 3D animace pohybu člověka podmíněné na pevné množině akcí definující pohyb, například "běhání" nebo "předklon". Inspirování úspěchy metod pro generování obrázků z textu na základě diskrétních latentních reprezentacích, jsme úspěšně vyzkoušeli použití těchto metod v kontextu generování pohybu, což je v kontrastu s dosavadními příst upy využívající spojité latentní proměnné. Ve srovnání s dosavadní nejlepší metodou ACTOR, naše metoda není limitována délkou generovaných sekvencí a dokáže plynule navázat na vstupní startovní sekvenci. Autoregressivní generování je omezeno délkou kon textu, což zajišťuje rozumnou rychlost generování. Dále, díky učení ve dvou fázích, budoucí modely se mohou snadno pře dučit na větších datasetech bez označení kategorií a dotrénovat se na konkrétním úkolu. Naši metodu jsme vyhodnotili na UESTC dataset, v metriká ch překování dosavadní metodu ACTOR a generuje animace srovnatelné s datasetem.en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra softwaru a výuky informatikycs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV