Zobrazit minimální záznam

Application of invertible elements in a zero-knowledge proof
dc.contributor.advisorŽemlička, Jan
dc.creatorKučerová, Karolína
dc.date.accessioned2022-10-04T17:25:22Z
dc.date.available2022-10-04T17:25:22Z
dc.date.issued2022
dc.identifier.urihttp://hdl.handle.net/20.500.11956/176128
dc.description.abstractThis work is focused on the description of one verifiable encryption scheme, specifically a zero-knowledge proof of knowledge protocol. Verifiable encryption allows us to prove properties of data without revealing its content. The main goal of the presented method is verification of knowledge of a secret key. This method can be used for group signa- tures, multiple steps secret sharing, key escrow protocols, and many others cryptographic protocols. It is based on the hardness of the Ring-LWE problem and problems of finding solutions to linear relations over some ring. It uses the principle of rejection sampling. The method is build on two closely described cryptographic protocols, Ring-LWE and Fiat-Shamir with aborts. It uses the construction of polynomial rings R = Z[x]/(xn + 1) a Rq = Zq[x]/(xn + 1). 1en_US
dc.description.abstractPráce se zaměřuje na popis kryptografického protokolu, který se řadí do skupiny ově- řitelného šifrování, přesněji jde o metodu ověření s nulovou znalostí. Ověřitelné šifrování nám dovoluje dokázat vlastnosti určitého textu. Pokud je šifrovací schéma je bezpečné, nemělo by při důkazu dojít k prozrazení obsahu textu. Hlavním cílem metody je ověření znalosti soukromého klíče. Metodu lze využít k vytváření skupinových podpisů, předávání informací ve více krocích, nebo například k uschovávání klíčů. Je založena na složitosti okruhového-LWE šifrování v kombinaci s hledáním řešení soustav lineárních rovnic a využívá principu rejection sampling. Zkoumaná metoda spojuje principy dvou blíže po- psaných kryptografických metod a to okruhového LWE a metody. Využívá konstrukci faktorokruhů R = Z[x]/(xn + 1) a Rq = Zq[x]/(xn + 1). 1cs_CZ
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectlattice|verification|cryptography|ring|invertibilityen_US
dc.subjectmřížka|ověření|kryptografie|okruh|invertibilitacs_CZ
dc.titleVyužití invertibilních prvků mřížky v ověření s nulovou znalostícs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2022
dcterms.dateAccepted2022-09-12
dc.description.departmentDepartment of Algebraen_US
dc.description.departmentKatedra algebrycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId244736
dc.title.translatedApplication of invertible elements in a zero-knowledge proofen_US
dc.contributor.refereePříhoda, Pavel
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineGeneral Mathematicsen_US
thesis.degree.disciplineObecná matematikacs_CZ
thesis.degree.programGeneral Mathematicsen_US
thesis.degree.programObecná matematikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra algebrycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Algebraen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csObecná matematikacs_CZ
uk.degree-discipline.enGeneral Mathematicsen_US
uk.degree-program.csObecná matematikacs_CZ
uk.degree-program.enGeneral Mathematicsen_US
thesis.grade.csVelmi dobřecs_CZ
thesis.grade.enVery gooden_US
uk.abstract.csPráce se zaměřuje na popis kryptografického protokolu, který se řadí do skupiny ově- řitelného šifrování, přesněji jde o metodu ověření s nulovou znalostí. Ověřitelné šifrování nám dovoluje dokázat vlastnosti určitého textu. Pokud je šifrovací schéma je bezpečné, nemělo by při důkazu dojít k prozrazení obsahu textu. Hlavním cílem metody je ověření znalosti soukromého klíče. Metodu lze využít k vytváření skupinových podpisů, předávání informací ve více krocích, nebo například k uschovávání klíčů. Je založena na složitosti okruhového-LWE šifrování v kombinaci s hledáním řešení soustav lineárních rovnic a využívá principu rejection sampling. Zkoumaná metoda spojuje principy dvou blíže po- psaných kryptografických metod a to okruhového LWE a metody. Využívá konstrukci faktorokruhů R = Z[x]/(xn + 1) a Rq = Zq[x]/(xn + 1). 1cs_CZ
uk.abstract.enThis work is focused on the description of one verifiable encryption scheme, specifically a zero-knowledge proof of knowledge protocol. Verifiable encryption allows us to prove properties of data without revealing its content. The main goal of the presented method is verification of knowledge of a secret key. This method can be used for group signa- tures, multiple steps secret sharing, key escrow protocols, and many others cryptographic protocols. It is based on the hardness of the Ring-LWE problem and problems of finding solutions to linear relations over some ring. It uses the principle of rejection sampling. The method is build on two closely described cryptographic protocols, Ring-LWE and Fiat-Shamir with aborts. It uses the construction of polynomial rings R = Z[x]/(xn + 1) a Rq = Zq[x]/(xn + 1). 1en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra algebrycs_CZ
thesis.grade.code2
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV