Zobrazit minimální záznam

Tři eseje o metodách založených na datech v oblasti oceňování a prognózování aktiv
dc.contributor.advisorBaruník, Jozef
dc.creatorGregor, Barbora
dc.date.accessioned2022-11-25T07:20:13Z
dc.date.available2022-11-25T07:20:13Z
dc.date.issued2022
dc.identifier.urihttp://hdl.handle.net/20.500.11956/178151
dc.description.abstractThis dissertation thesis consists of three papers focusing on applications of data-driven methods in asset pricing and forecasting. In the first paper, we decompose the term structure of crude oil futures prices using dynamic Nelson-Siegel model and propose to forecast them with the generalized regression framework based on neural networks. We find the neural networks to produce significantly more accurate forecasts as compared to several benchmark models. The second paper demonstrates how time-varying coefficients model can help to explore dynamics in risk-return trade-off on sovereign bond market across entire term structure. Our extensive 12-year dataset of high-frequency data of U.S. and German sovereign bond prices of 2-year, 5-year, 10-year and 30-year tenors allows us to construct realized measures of risk as well as exploring risk-return relationship under various market conditions. In addition to realized volatility, we find realized kurtosis to be priced in bond returns. Importantly, we detect the risk factor captured by realized kurtosis to have positive effect on returns in crisis turning to negative values in calm periods. In the third paper, we use time- varying coefficients methodology and higher realized moments in bond volatility forecasting challenging the HAR model. We detect realized...en_US
dc.description.abstractTato disertační práce se skládá ze tří článků zaměřených na aplikace metod založených na datech v oblasti prognózování a oceňování aktiv. V první práci rozkládáme časovou strukturu cen futures na ropných trzích pomocí dynamického Nelson-Siegelova modelu a navrhujeme jejich předpověď pomocí zobecněného regresního modelu založeného na neuronových sítích. Zjistili jsme, že neuronové sítě poskytují výrazně přesnější prognózy ve srovnání s několika referenčními modely. Druhý článek ukazuje, jak může model časově proměnlivých koeficientů pomoci zkoumat dynamiku vztahu mezi rizikem a výnosem na trhu státních dluhopisů napříč celou časovou strukturou. Náš rozsáhlý dvanáctiletý soubor vysokofrekvenčních dat o cenách amerických a německých státních dluhopisů s dvouletou, pětiletou, desetiletou a třicetiletou dobou splatnosti nám umožňuje konstruovat realizované metriky rizika a také zkoumat vztah rizika a výnosu za různých tržních podmínek. Kromě realizované volatility jsme zjistili, že realizovaná kurtóza je zohledněna v cenách dluhopisů. Důležité je, že zjišťujeme, že rizikový faktor zachycený realizovanou kurtózou má pozitivní vliv na výnosy v období krize a v klidných obdobích se mění na záporné hodnoty. Ve třetím článku používáme metodiku časově proměnných koeficientů a vyšších realizovaných momentů při...cs_CZ
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Fakulta sociálních vědcs_CZ
dc.subjecttime seriesen_US
dc.subjectdata-driven methodsen_US
dc.subjecthighfrequency dataen_US
dc.subjectterm structureen_US
dc.subjecttime seriescs_CZ
dc.subjectdata-driven methodscs_CZ
dc.subjecthighfrequency datacs_CZ
dc.subjectterm structucs_CZ
dc.titleThree Essays on Data-Driven Methods in Asset Pricing and Forecastingen_US
dc.typedizertační prácecs_CZ
dcterms.created2022
dcterms.dateAccepted2022-10-12
dc.description.departmentInstitute of Economic Studiesen_US
dc.description.departmentInstitut ekonomických studiícs_CZ
dc.description.facultyFakulta sociálních vědcs_CZ
dc.description.facultyFaculty of Social Sciencesen_US
dc.identifier.repId169552
dc.title.translatedTři eseje o metodách založených na datech v oblasti oceňování a prognózování aktivcs_CZ
dc.contributor.refereeChen, Cathy Yi-Hsuan
dc.contributor.refereeBaumohl, Eduard
dc.contributor.refereeVácha, Lukáš
thesis.degree.namePh.D.
thesis.degree.leveldoktorskécs_CZ
thesis.degree.disciplineEconomics and Financeen_US
thesis.degree.disciplineEkonomie a financecs_CZ
thesis.degree.programEkonomie a financecs_CZ
thesis.degree.programEconomics and Financeen_US
uk.thesis.typedizertační prácecs_CZ
uk.taxonomy.organization-csFakulta sociálních věd::Institut ekonomických studiícs_CZ
uk.taxonomy.organization-enFaculty of Social Sciences::Institute of Economic Studiesen_US
uk.faculty-name.csFakulta sociálních vědcs_CZ
uk.faculty-name.enFaculty of Social Sciencesen_US
uk.faculty-abbr.csFSVcs_CZ
uk.degree-discipline.csEkonomie a financecs_CZ
uk.degree-discipline.enEconomics and Financeen_US
uk.degree-program.csEkonomie a financecs_CZ
uk.degree-program.enEconomics and Financeen_US
thesis.grade.csProspěl/acs_CZ
thesis.grade.enPassen_US
uk.abstract.csTato disertační práce se skládá ze tří článků zaměřených na aplikace metod založených na datech v oblasti prognózování a oceňování aktiv. V první práci rozkládáme časovou strukturu cen futures na ropných trzích pomocí dynamického Nelson-Siegelova modelu a navrhujeme jejich předpověď pomocí zobecněného regresního modelu založeného na neuronových sítích. Zjistili jsme, že neuronové sítě poskytují výrazně přesnější prognózy ve srovnání s několika referenčními modely. Druhý článek ukazuje, jak může model časově proměnlivých koeficientů pomoci zkoumat dynamiku vztahu mezi rizikem a výnosem na trhu státních dluhopisů napříč celou časovou strukturou. Náš rozsáhlý dvanáctiletý soubor vysokofrekvenčních dat o cenách amerických a německých státních dluhopisů s dvouletou, pětiletou, desetiletou a třicetiletou dobou splatnosti nám umožňuje konstruovat realizované metriky rizika a také zkoumat vztah rizika a výnosu za různých tržních podmínek. Kromě realizované volatility jsme zjistili, že realizovaná kurtóza je zohledněna v cenách dluhopisů. Důležité je, že zjišťujeme, že rizikový faktor zachycený realizovanou kurtózou má pozitivní vliv na výnosy v období krize a v klidných obdobích se mění na záporné hodnoty. Ve třetím článku používáme metodiku časově proměnných koeficientů a vyšších realizovaných momentů při...cs_CZ
uk.abstract.enThis dissertation thesis consists of three papers focusing on applications of data-driven methods in asset pricing and forecasting. In the first paper, we decompose the term structure of crude oil futures prices using dynamic Nelson-Siegel model and propose to forecast them with the generalized regression framework based on neural networks. We find the neural networks to produce significantly more accurate forecasts as compared to several benchmark models. The second paper demonstrates how time-varying coefficients model can help to explore dynamics in risk-return trade-off on sovereign bond market across entire term structure. Our extensive 12-year dataset of high-frequency data of U.S. and German sovereign bond prices of 2-year, 5-year, 10-year and 30-year tenors allows us to construct realized measures of risk as well as exploring risk-return relationship under various market conditions. In addition to realized volatility, we find realized kurtosis to be priced in bond returns. Importantly, we detect the risk factor captured by realized kurtosis to have positive effect on returns in crisis turning to negative values in calm periods. In the third paper, we use time- varying coefficients methodology and higher realized moments in bond volatility forecasting challenging the HAR model. We detect realized...en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Fakulta sociálních věd, Institut ekonomických studiícs_CZ
thesis.grade.codeP
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO
dc.identifier.lisID9925688610506986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV