Zobrazit minimální záznam

Angles, areas, volumes: dot product and determinant
dc.contributor.advisorBeran, Filip
dc.creatorOndič, Milan
dc.date.accessioned2023-07-24T14:11:10Z
dc.date.available2023-07-24T14:11:10Z
dc.date.issued2023
dc.identifier.urihttp://hdl.handle.net/20.500.11956/180443
dc.description.abstractThis bachelor thesis deals with the introduction of scalar product and determinant, which are important tools of analytic geometry. The purpose of the thesis is to provide a parallel interpretation of these two key concepts of advanced algebra - the dot product and the determinant - primarily from a geometric, not an algebraic, point of view. The aim of the thesis is to show how both representations can be derived just by solving geometric problems in two-dimensional space and then how to transfer them to three-dimensional space. The first part of the work is devoted to finding the angle between two vectors in the plane and to calculating the area of a triangle. Both of problems are solved in several ways and then the scalar product and determinant are derived. The second part of the work is devoted to three-dimensional space, in particular the angle between two vectors, lines and planes and the volume of a tetrahedron and parallelogram. This is then supplemented by the introduction of some notions of linear algebra, an investigation of the algebraic properties of the dot product and determinant, and a generalization of the notions to the n-dimensional space. The last part of the thesis is devoted to the analysis of selected czech high school mathematics textbooks in terms of the occurrence and...en_US
dc.description.abstractTato bakalářská práce se zabývá zavedením skalárního součinu a determinantu, které jsou důležitými nástroji analytické geometrie. Náplní práce je paralelně vést výklad těchto dvou klíčových konceptů pokročilejší algebry - skalárního součinu a determinantu - primárně z hlediska geometrického, nikoliv algebraického. Cílem práce je ukázat, jak se dají obě zobrazení odvodit jen na základě řešení geometrických problémů v dvourozměrném prostoru a následně jak je přenést do prostoru trojrozměrného. První část práce je věnována hledání odchylek dvou vektorů v rovině a počítání obsahu trojúhelníku. Oba typy úloh jsou řešeny několika způsoby a na jejich základě se pak odvodí skalární součin a determinant. Druhá část práce je pak věnována trojrozměrného prostoru, zejména pak odchylkám vektorů, přímek a rovin a objemu čtyřstěnu a rovnoběžnostěnu. To je pak doplněno o zavedení některých pojmů lineární algebry, zkoumání algebraických vlastností skalárního součinu i determinantu a zobecnění pojmů do n-rozměrného prostoru. Poslední část práce je věnována analýze vybraných českých středoškolských učebnic matematiky z hlediska výskytu a pojetí výkladu skalárního součinu a determinantu. Všechny úlohy jsou doplněny obrázky vytvořenými v programu GeoGebra. Práce je primárně určena pro středoškolské učitele i žáky a studenty...cs_CZ
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Pedagogická fakultacs_CZ
dc.subjectanalytic geometryen_US
dc.subjectlinear algebraen_US
dc.subjectdot producten_US
dc.subjectdeterminanten_US
dc.subjectanalytická geometriecs_CZ
dc.subjectlineární algebracs_CZ
dc.subjectskalární součincs_CZ
dc.subjectdeterminantcs_CZ
dc.titleÚhly, obsahy, objemy: skalární součin a determinantcs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2023
dcterms.dateAccepted2023-05-16
dc.description.departmentKatedra matematiky a didaktiky matematikycs_CZ
dc.description.facultyFaculty of Educationen_US
dc.description.facultyPedagogická fakultacs_CZ
dc.identifier.repId247403
dc.title.translatedAngles, areas, volumes: dot product and determinanten_US
dc.contributor.refereeZamboj, Michal
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineAnglický jazyk se zaměřením na vzdělávání - Matematika se zaměřením na vzdělávánícs_CZ
thesis.degree.disciplineEnglish Language Oriented at Education - Mathematics Oriented at Educationen_US
thesis.degree.programSpecializace v pedagogicecs_CZ
thesis.degree.programSpecialization in Educationen_US
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csPedagogická fakulta::Katedra matematiky a didaktiky matematikycs_CZ
uk.faculty-name.csPedagogická fakultacs_CZ
uk.faculty-name.enFaculty of Educationen_US
uk.faculty-abbr.csPedFcs_CZ
uk.degree-discipline.csAnglický jazyk se zaměřením na vzdělávání - Matematika se zaměřením na vzdělávánícs_CZ
uk.degree-discipline.enEnglish Language Oriented at Education - Mathematics Oriented at Educationen_US
uk.degree-program.csSpecializace v pedagogicecs_CZ
uk.degree-program.enSpecialization in Educationen_US
thesis.grade.csVelmi dobřecs_CZ
thesis.grade.enVery gooden_US
uk.abstract.csTato bakalářská práce se zabývá zavedením skalárního součinu a determinantu, které jsou důležitými nástroji analytické geometrie. Náplní práce je paralelně vést výklad těchto dvou klíčových konceptů pokročilejší algebry - skalárního součinu a determinantu - primárně z hlediska geometrického, nikoliv algebraického. Cílem práce je ukázat, jak se dají obě zobrazení odvodit jen na základě řešení geometrických problémů v dvourozměrném prostoru a následně jak je přenést do prostoru trojrozměrného. První část práce je věnována hledání odchylek dvou vektorů v rovině a počítání obsahu trojúhelníku. Oba typy úloh jsou řešeny několika způsoby a na jejich základě se pak odvodí skalární součin a determinant. Druhá část práce je pak věnována trojrozměrného prostoru, zejména pak odchylkám vektorů, přímek a rovin a objemu čtyřstěnu a rovnoběžnostěnu. To je pak doplněno o zavedení některých pojmů lineární algebry, zkoumání algebraických vlastností skalárního součinu i determinantu a zobecnění pojmů do n-rozměrného prostoru. Poslední část práce je věnována analýze vybraných českých středoškolských učebnic matematiky z hlediska výskytu a pojetí výkladu skalárního součinu a determinantu. Všechny úlohy jsou doplněny obrázky vytvořenými v programu GeoGebra. Práce je primárně určena pro středoškolské učitele i žáky a studenty...cs_CZ
uk.abstract.enThis bachelor thesis deals with the introduction of scalar product and determinant, which are important tools of analytic geometry. The purpose of the thesis is to provide a parallel interpretation of these two key concepts of advanced algebra - the dot product and the determinant - primarily from a geometric, not an algebraic, point of view. The aim of the thesis is to show how both representations can be derived just by solving geometric problems in two-dimensional space and then how to transfer them to three-dimensional space. The first part of the work is devoted to finding the angle between two vectors in the plane and to calculating the area of a triangle. Both of problems are solved in several ways and then the scalar product and determinant are derived. The second part of the work is devoted to three-dimensional space, in particular the angle between two vectors, lines and planes and the volume of a tetrahedron and parallelogram. This is then supplemented by the introduction of some notions of linear algebra, an investigation of the algebraic properties of the dot product and determinant, and a generalization of the notions to the n-dimensional space. The last part of the thesis is devoted to the analysis of selected czech high school mathematics textbooks in terms of the occurrence and...en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Pedagogická fakulta, Katedra matematiky a didaktiky matematikycs_CZ
thesis.grade.code2
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV