dc.contributor.advisor | Kadlec, Rudolf | |
dc.creator | Zelinka, Mikuláš | |
dc.date.accessioned | 2023-07-25T01:35:47Z | |
dc.date.available | 2023-07-25T01:35:47Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/180967 | |
dc.description.abstract | The ability to learn optimal control policies in systems where action space is defined by sentences in natural language would allow many interesting real-world applications such as automatic optimisation of dialogue systems. Text-based games with multiple endings and rewards are a promising platform for this task, since their feedback allows us to employ reinforcement learning techniques to jointly learn text representations and control policies. We present a general text game playing agent, testing its generalisation and transfer learning performance and showing its ability to play multiple games at once. We also present pyfiction, an open-source library for universal access to different text games that could, together with our agent that implements its interface, serve as a baseline for future research. | en_US |
dc.description.abstract | Schopnost naučit se optimálnímu chování v prostředích, kde jsou stavy i akce vyjádřeny v přirozeném jazyce, by se dala aplikovat na řadu skutečných problémů, jako je optimalizace dialogových systémů. Pro tento učící problém jsou vhodnou doménou textové hry s větším počtem možných konců se zpětnou vazbou v podobně číselných ohodnocení. S její pomocí můžeme v tomto kontextu využít technik zpětnovazebního učení pro současné učení vhodné reprezentace textových dat a rozhodovacích pravidel. Představujeme model obecného agenta schopného hrát textové hry a zkoumáme jeho schopnost generalizace a přenosu získaných znalostí na nová prostředí. Rovněž demonstrujeme, že se agent dokáže naučit hrát více textových her najednou. Dále prezentujeme otevřenou knihovnu pyfiction, která sjednocuje přístup k různým textovým hrám a doufáme, že společně s agentem, který je její součástí, by v budoucnu mohla sloužit jako referenční rámec pro podobné úlohy. | cs_CZ |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | reinforcement learning | en_US |
dc.subject | text games | en_US |
dc.subject | neural networks | en_US |
dc.subject | zpětnovazební učení | cs_CZ |
dc.subject | textové hry | cs_CZ |
dc.subject | neuronové sítě | cs_CZ |
dc.title | Using reinforcement learning to learn how to play text-based games | en_US |
dc.type | rigorózní práce | cs_CZ |
dcterms.created | 2023 | |
dcterms.dateAccepted | 2023-05-29 | |
dc.description.department | Katedra teoretické informatiky a matematické logiky | cs_CZ |
dc.description.department | Department of Theoretical Computer Science and Mathematical Logic | en_US |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 258802 | |
dc.title.translated | Použití zpětnovazebního učení pro hraní textových her | cs_CZ |
thesis.degree.name | RNDr. | |
thesis.degree.level | rigorózní řízení | cs_CZ |
thesis.degree.discipline | Teoretická informatika | cs_CZ |
thesis.degree.discipline | Theoretical Computer Science | en_US |
thesis.degree.program | Informatika | cs_CZ |
thesis.degree.program | Computer Science | en_US |
uk.thesis.type | rigorózní práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra teoretické informatiky a matematické logiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Theoretical Computer Science and Mathematical Logic | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Teoretická informatika | cs_CZ |
uk.degree-discipline.en | Theoretical Computer Science | en_US |
uk.degree-program.cs | Informatika | cs_CZ |
uk.degree-program.en | Computer Science | en_US |
thesis.grade.cs | Uznáno | cs_CZ |
thesis.grade.en | Recognized | en_US |
uk.abstract.cs | Schopnost naučit se optimálnímu chování v prostředích, kde jsou stavy i akce vyjádřeny v přirozeném jazyce, by se dala aplikovat na řadu skutečných problémů, jako je optimalizace dialogových systémů. Pro tento učící problém jsou vhodnou doménou textové hry s větším počtem možných konců se zpětnou vazbou v podobně číselných ohodnocení. S její pomocí můžeme v tomto kontextu využít technik zpětnovazebního učení pro současné učení vhodné reprezentace textových dat a rozhodovacích pravidel. Představujeme model obecného agenta schopného hrát textové hry a zkoumáme jeho schopnost generalizace a přenosu získaných znalostí na nová prostředí. Rovněž demonstrujeme, že se agent dokáže naučit hrát více textových her najednou. Dále prezentujeme otevřenou knihovnu pyfiction, která sjednocuje přístup k různým textovým hrám a doufáme, že společně s agentem, který je její součástí, by v budoucnu mohla sloužit jako referenční rámec pro podobné úlohy. | cs_CZ |
uk.abstract.en | The ability to learn optimal control policies in systems where action space is defined by sentences in natural language would allow many interesting real-world applications such as automatic optimisation of dialogue systems. Text-based games with multiple endings and rewards are a promising platform for this task, since their feedback allows us to employ reinforcement learning techniques to jointly learn text representations and control policies. We present a general text game playing agent, testing its generalisation and transfer learning performance and showing its ability to play multiple games at once. We also present pyfiction, an open-source library for universal access to different text games that could, together with our agent that implements its interface, serve as a baseline for future research. | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra teoretické informatiky a matematické logiky | cs_CZ |
thesis.grade.code | U | |
uk.publication-place | Praha | cs_CZ |
uk.thesis.defenceStatus | U | |