Zobrazit minimální záznam

Automatická identifikace citátů
dc.contributor.advisorHana, Jiří
dc.creatorUstinova, Evgeniya
dc.date.accessioned2023-07-24T12:40:53Z
dc.date.available2023-07-24T12:40:53Z
dc.date.issued2023
dc.identifier.urihttp://hdl.handle.net/20.500.11956/181574
dc.description.abstractQuotations extraction and attribution are important practical tasks for the media, but most of the presented solutions are monolingual. In this work, I present a complex machine learning-based system for extraction and attribution of direct and indirect quo- tations, which is trained on English and tested on Czech and Russian data. Czech and Russian test datasets were manually annotated as part of this study. This system is com- pared against a rule-based baseline model. Baseline model demonstrates better precision in extraction of quotation elements, but low recall. The machine learning-based model is better overall in extracting separate elements of quotations and full quotations as well. 1en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectNLP|quotation extraction|quotation attribution|CRFs|article|annotationen_US
dc.subjectNLPcs_CZ
dc.titleAutomatic detection and attribution of quotesen_US
dc.typediplomová prácecs_CZ
dcterms.created2023
dcterms.dateAccepted2023-06-06
dc.description.departmentÚstav formální a aplikované lingvistikycs_CZ
dc.description.departmentInstitute of Formal and Applied Linguisticsen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId245126
dc.title.translatedAutomatická identifikace citátůcs_CZ
dc.contributor.refereeVidová Hladká, Barbora
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineComputer Science - Language Technologies and Computational Linguisticscs_CZ
thesis.degree.disciplineComputer Science - Language Technologies and Computational Linguisticsen_US
thesis.degree.programComputer Science - Language Technologies and Computational Linguisticscs_CZ
thesis.degree.programComputer Science - Language Technologies and Computational Linguisticsen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Ústav formální a aplikované lingvistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Institute of Formal and Applied Linguisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csComputer Science - Language Technologies and Computational Linguisticscs_CZ
uk.degree-discipline.enComputer Science - Language Technologies and Computational Linguisticsen_US
uk.degree-program.csComputer Science - Language Technologies and Computational Linguisticscs_CZ
uk.degree-program.enComputer Science - Language Technologies and Computational Linguisticsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.enQuotations extraction and attribution are important practical tasks for the media, but most of the presented solutions are monolingual. In this work, I present a complex machine learning-based system for extraction and attribution of direct and indirect quo- tations, which is trained on English and tested on Czech and Russian data. Czech and Russian test datasets were manually annotated as part of this study. This system is com- pared against a rule-based baseline model. Baseline model demonstrates better precision in extraction of quotation elements, but low recall. The machine learning-based model is better overall in extracting separate elements of quotations and full quotations as well. 1en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Ústav formální a aplikované lingvistikycs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV