Failure Modes of Large Language Models
Režimy selhání velkých jazykových modelů
diplomová práce (OBHÁJENO)

Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/182874Identifikátory
SIS: 254152
Kolekce
- Kvalifikační práce [18291]
Autor
Vedoucí práce
Oponent práce
Střítecký, Vít
Fakulta / součást
Fakulta sociálních věd
Obor
Mezinárodní bezpečnostní studia
Katedra / ústav / klinika
Katedra bezpečnostních studií
Datum obhajoby
22. 6. 2023
Nakladatel
Univerzita Karlova, Fakulta sociálních vědJazyk
Angličtina
Známka
Výborně
Klíčová slova (česky)
Large Language Models, Generative Pre-trained Transformer 3, Instruct Generative Pre-trained Transformer, Artificial Intelligence ethicsKlíčová slova (anglicky)
Large Language Models, Generative Pre-trained Transformer 3, Instruct Generative Pre-trained Transformer, Artificial Intelligence ethicsFailure Modes of Large Language Models Soňa Milová Abstract Diploma thesis "The failure modes of Large Language Models" focuses on addressing failure modes of Large Language Models (LLMs) from the ethical, moral and security point of view. The method of the empirical analysis is document analysis that defines the existing study, and the process by which failure modes are selected from it and analysed further. It looks closely at OpenAI's Generative Pre-trained Transformer 3 (GPT-3) and its improved successor Instruct Generative Pre-trained Transformer (IGPT). The thesis initially investigates model bias, privacy violations and fake news as the main failure modes of GPT-3. Consequently, it utilizes the concept of technological determinism as an ideology to evaluate whether IGPT has been effectively designed to address all the aforementioned concerns. The core argument of the thesis is that the utopic and dystopic view of technological determinism need to be combined with the additional aspect of human control. LLMs are in need of human involvement to help machines better understand context, mitigate failure modes, and of course, to ground them in reality. Therefore, contextualist view is portrayed as the most accurate lens through which to look at LLMs as it argues they depend on the responsibilities,...