Klasifikační problémy z lineární algebry a reprezentace toulců
Classification problems from linear algebra and representations of quivers
bakalářská práce (OBHÁJENO)

Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/182996Identifikátory
SIS: 92214
Kolekce
- Kvalifikační práce [11326]
Autor
Vedoucí práce
Oponent práce
Šaroch, Jan
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná matematika
Katedra / ústav / klinika
Katedra algebry
Datum obhajoby
28. 6. 2023
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Čeština
Známka
Výborně
Klíčová slova (česky)
reprezentace toulců|klasifikace reprezentací|ireducibilní zobrazení|Auslanderův-Reitenin toulecKlíčová slova (anglicky)
representations of quivers|classification of representations|irreducible morphisms|Auslander-Reiten quiverTato práce se zabývá popisem kategorií konečně dimenzionálních reprezentací toulců. Jejím cílem je předvést klasifikaci nerozložitelných objektů v této kategorii pro toulce, jejichž podkladový graf je Dynkinův, a rozebrat teorii na příkladu tzv. problému tří pod- prostorů. V první kapitole jsou představeny základní poznatky o reprezentacích toulců. V druhé části je s pomocí reflexních funktorů a reflexních transformací již předveden sa- motný důkaz. Dále se tato práce ve třetí kapitole zabývá základy pro teorii M. Auslandera a I. Reitenové. V závěru je rozebrán Auslanderův-Reitenin toulec pro kategorii konečně dimenzionálních reprezentací již výše zmíněného problému tří podprostorů. 1
This thesis deals with the description of categories of finite-dimensional representati- ons of quivers. Its aim is to present a classification of indecomposable objects in this category for quivers whose underlying graph is Dynkin and to discuss the theory on the example of the so-called three-subspace problem. In the first chapter, the basic concepts of quiver representations are introduced. In the second chapter, the proof itself is de- monstrated using reflection functors and reflection transformations. Then, in the third chapter, this thesis deals with the basics for the theory of M. Auslander and I. Reiten. In the conclusion, the Auslander-Reiten quiver is discussed for the category of finite- dimensional representations of the above-mentioned problem of three subspaces. 1