dc.contributor.advisor | Příhoda, Pavel | |
dc.creator | Červenková, Eliška | |
dc.date.accessioned | 2023-07-24T16:39:36Z | |
dc.date.available | 2023-07-24T16:39:36Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/183003 | |
dc.description.abstract | The theses concerns the topic of p-adic Ruban and Browkin continued frations and their properties. To begin with, the concept of p-adic numbers is introduced and the necessary theory is shown. Next, continued fractions are defined and their convergence in both real and p-adic numbers is analyzed. Following this, the theses examines Ruban continued fractions and presents an algorithm for determining whether the expansion is terminating, along with a derivation of the maximum number of algorithmic steps required. It also holds that if Ruban expansion is not terminating, then it is periodic. A detailed description of the periodicity, including its properties, is provided. Then the focus is shifted to Browkin continued fractions. It holds that every rational number has a finite Browkin continued fraction. This claim is subsequently proven. The theses concludes with examples that demonstrate the properties of both Ruban and Browkin continued fractions. 1 | en_US |
dc.description.abstract | Tato práce se věnuje Rubanovu a Browkinovu rozvoji p-adických čísel do řetězového zlomku a jejich vlastnostem. Nejprve je zaveden pojem p-adických čísel a sepsaná po- třebná teorie. Následně je definován řetězový zlomek a jsou odvozeny podmínky konver- gence v reálných a p-adických číslech. Dále je v textu popsán Rubanův rozvoj do řetězo- vého zlomku a práce se zabývá jeho konečností. Součástí je popis algoritmu, díky kterému lze o konečnosti rozhodnout. Odvozen je i maximální počet kroků v tomto algoritmu. Pro Rubanův rozvoj dále platí, že je-li nekonečný, pak je periodický. V textu je periodicita včetně jejích vlastností blíže popsána. Práce se pak věnuje Browkinovu rozvoji do řetě- zového zlomku včetně důkazu, že tento rozvoj je pro racionální čísla konečný. Obsahem jsou i příklady ilustrující popsané vlastnosti obou rozvojů. 1 | cs_CZ |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | p-adic numbers|continued fractions|Ruban continued fractions|Browkin continued fractions | en_US |
dc.subject | p-adická čísla|Rubanův rozvoj do řetězového zlomku|Browkinův rozvoj do řetězového zlomku|řetězové zlomky | cs_CZ |
dc.title | Řetězové zlomky v tělese p-adických čísel | cs_CZ |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2023 | |
dcterms.dateAccepted | 2023-06-28 | |
dc.description.department | Katedra algebry | cs_CZ |
dc.description.department | Department of Algebra | en_US |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 257197 | |
dc.title.translated | Continued fractions in local fields | en_US |
dc.contributor.referee | Růžička, Pavel | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | Obecná matematika | cs_CZ |
thesis.degree.discipline | General Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
thesis.degree.program | Mathematics | en_US |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra algebry | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Algebra | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Obecná matematika | cs_CZ |
uk.degree-discipline.en | General Mathematics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Velmi dobře | cs_CZ |
thesis.grade.en | Very good | en_US |
uk.abstract.cs | Tato práce se věnuje Rubanovu a Browkinovu rozvoji p-adických čísel do řetězového zlomku a jejich vlastnostem. Nejprve je zaveden pojem p-adických čísel a sepsaná po- třebná teorie. Následně je definován řetězový zlomek a jsou odvozeny podmínky konver- gence v reálných a p-adických číslech. Dále je v textu popsán Rubanův rozvoj do řetězo- vého zlomku a práce se zabývá jeho konečností. Součástí je popis algoritmu, díky kterému lze o konečnosti rozhodnout. Odvozen je i maximální počet kroků v tomto algoritmu. Pro Rubanův rozvoj dále platí, že je-li nekonečný, pak je periodický. V textu je periodicita včetně jejích vlastností blíže popsána. Práce se pak věnuje Browkinovu rozvoji do řetě- zového zlomku včetně důkazu, že tento rozvoj je pro racionální čísla konečný. Obsahem jsou i příklady ilustrující popsané vlastnosti obou rozvojů. 1 | cs_CZ |
uk.abstract.en | The theses concerns the topic of p-adic Ruban and Browkin continued frations and their properties. To begin with, the concept of p-adic numbers is introduced and the necessary theory is shown. Next, continued fractions are defined and their convergence in both real and p-adic numbers is analyzed. Following this, the theses examines Ruban continued fractions and presents an algorithm for determining whether the expansion is terminating, along with a derivation of the maximum number of algorithmic steps required. It also holds that if Ruban expansion is not terminating, then it is periodic. A detailed description of the periodicity, including its properties, is provided. Then the focus is shifted to Browkin continued fractions. It holds that every rational number has a finite Browkin continued fraction. This claim is subsequently proven. The theses concludes with examples that demonstrate the properties of both Ruban and Browkin continued fractions. 1 | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra algebry | cs_CZ |
thesis.grade.code | 2 | |
uk.publication-place | Praha | cs_CZ |
uk.thesis.defenceStatus | O | |