Nonassociativity in two operations
Neasociativita ve dvou operacích
bakalářská práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/183008Identifikátory
SIS: 257724
Kolekce
- Kvalifikační práce [11264]
Autor
Vedoucí práce
Oponent práce
Patáková, Zuzana
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Obecná matematika
Katedra / ústav / klinika
Katedra algebry
Datum obhajoby
28. 6. 2023
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Výborně
Klíčová slova (česky)
asociativní trojice|kvazigrupa|izotopie|index asociativityKlíčová slova (anglicky)
associative triple|quasigroup|isotopy|associativity indexTato práce navazuje především na výzkum Drápala a Valenta, kteří se zabývali neaso- ciativitou jedné kvazigrupové operace. Jejím hlavním cílem je zkoumat počet trojic (x, y, z) ∈ Q3 takových, že (x∗y)◦z = x∗(y ◦z), kde (Q, ∗) a (Q, ◦) jsou dvě kvazigrupy, |Q| = n. Nechť a2(C) je počet takových trojic v kvazigrupovém páru C. Toto číslo nazývejme index asociativity C. Označme a2(n) minimální a2(C), kde C je pár řádu n. Průměrováním indexu asociativity přes všechny hlavní izotopy kvazigrupového páru dokážeme, že a2(n) ≤ n2 (1 + 1/(n − 1)), n > 2. Poté charakterizujeme páry C, které v průměru dosahují a2(C) = n2 , a ukážeme, že tato hodnota je vylepšenou horní mezí pro a2(n), n > 2. Dále se věnujeme zkoumání párů kvazigrup izotopních grupám. Na závěr uvádíme výpočetní výsledky s příklady, včetně a2(4) = 8 a a2(5) = 9. 1
This thesis follows up mainly on the research of Drápal and Valent, who studied the nonassociativity of one quasigroup operation. Its central objective is to examine the number of triples (x, y, z) ∈ Q3 such that (x ∗ y) ◦ z = x ∗ (y ◦ z), where (Q, ∗) and (Q, ◦) are two quasigroups, |Q| = n. Let a2(C) be the number of such triples in a quasigroup couple C. Call it the associativity index. Denote by a2(n) the minimal a2(C), where C is a couple of order n. By averaging the associativity index over all the principal isotopes of a quasigroup couple, we prove that a2(n) ≤ n2 (1+1/(n−1)), n > 2. We then characterize the couples C that, on average, attain a2(C) = n2 and we prove that this value is an improved upper bound on a2(n), n > 2. Furthermore, we begin research on couples of quasigroups isotopic to groups. Lastly, we present computational results with examples, including a2(4) = 8 and a2(5) = 9. 1