dc.contributor.advisor | Jelínek, Vít | |
dc.creator | Medek, Michal | |
dc.date.accessioned | 2023-07-24T12:42:32Z | |
dc.date.available | 2023-07-24T12:42:32Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/183053 | |
dc.description.abstract | In this work, we focus on the M¨obius function µ(X, Y ) of four variants of containment posets of sparse matrices, for which the M¨obius function has not been studied before. A sparse matrix is a binary matrix containing at most one 1-cell in each row and column. We focus mainly on the dominated scattered containment, where X ≤ Y if X can be created from Y by removing some rows and columns and by changing some 1-cells to 0-cells. We consider this poset to be a generalization of the permutation poset, as for permutations σ and π, if σ ≤ π, then the permutation matrices Mσ and Mπ satisfy Mσ ≤ Mπ. For the dominated scattered containment, we study the values of the M¨obius function on intervals of the form [1, Y ], where 1 is the 1 × 1 matrix consisting of a single 1-cell. We show that the situation when Y contains a zero row or column can be reduced to a situation when Y has no such zero line, that is, Y is a permutation matrix. For a permutation matrix Y , we derived a theorem expressing µ(1, Y ) in terms of the blocks of the sum decomposition of Y . | en_US |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | Sparse matrix|Submatrix|Möbius function | en_US |
dc.subject | Řídká matice|Podmatice|Möbiova funkce | cs_CZ |
dc.title | Möbius function of matrix posets | en_US |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2023 | |
dcterms.dateAccepted | 2023-06-29 | |
dc.description.department | Informatický ústav Univerzity Karlovy | cs_CZ |
dc.description.department | Computer Science Institute of Charles University | en_US |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 252669 | |
dc.title.translated | Möbiova funkce maticových uspořádání | cs_CZ |
dc.contributor.referee | Kantor, Ida | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | Informatika se specializací Programování a vývoj software | cs_CZ |
thesis.degree.discipline | Computer Science with specialisation in Programming and Software Development | en_US |
thesis.degree.program | Informatika | cs_CZ |
thesis.degree.program | Computer Science | en_US |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Informatický ústav Univerzity Karlovy | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Computer Science Institute of Charles University | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Informatika se specializací Programování a vývoj software | cs_CZ |
uk.degree-discipline.en | Computer Science with specialisation in Programming and Software Development | en_US |
uk.degree-program.cs | Informatika | cs_CZ |
uk.degree-program.en | Computer Science | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.en | In this work, we focus on the M¨obius function µ(X, Y ) of four variants of containment posets of sparse matrices, for which the M¨obius function has not been studied before. A sparse matrix is a binary matrix containing at most one 1-cell in each row and column. We focus mainly on the dominated scattered containment, where X ≤ Y if X can be created from Y by removing some rows and columns and by changing some 1-cells to 0-cells. We consider this poset to be a generalization of the permutation poset, as for permutations σ and π, if σ ≤ π, then the permutation matrices Mσ and Mπ satisfy Mσ ≤ Mπ. For the dominated scattered containment, we study the values of the M¨obius function on intervals of the form [1, Y ], where 1 is the 1 × 1 matrix consisting of a single 1-cell. We show that the situation when Y contains a zero row or column can be reduced to a situation when Y has no such zero line, that is, Y is a permutation matrix. For a permutation matrix Y , we derived a theorem expressing µ(1, Y ) in terms of the blocks of the sum decomposition of Y . | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Informatický ústav Univerzity Karlovy | cs_CZ |
thesis.grade.code | 1 | |
uk.publication-place | Praha | cs_CZ |
uk.thesis.defenceStatus | O | |