Zobrazit minimální záznam

Möbiova funkce maticových uspořádání
dc.contributor.advisorJelínek, Vít
dc.creatorMedek, Michal
dc.date.accessioned2023-07-24T12:42:32Z
dc.date.available2023-07-24T12:42:32Z
dc.date.issued2023
dc.identifier.urihttp://hdl.handle.net/20.500.11956/183053
dc.description.abstractIn this work, we focus on the M¨obius function µ(X, Y ) of four variants of containment posets of sparse matrices, for which the M¨obius function has not been studied before. A sparse matrix is a binary matrix containing at most one 1-cell in each row and column. We focus mainly on the dominated scattered containment, where X ≤ Y if X can be created from Y by removing some rows and columns and by changing some 1-cells to 0-cells. We consider this poset to be a generalization of the permutation poset, as for permutations σ and π, if σ ≤ π, then the permutation matrices Mσ and Mπ satisfy Mσ ≤ Mπ. For the dominated scattered containment, we study the values of the M¨obius function on intervals of the form [1, Y ], where 1 is the 1 × 1 matrix consisting of a single 1-cell. We show that the situation when Y contains a zero row or column can be reduced to a situation when Y has no such zero line, that is, Y is a permutation matrix. For a permutation matrix Y , we derived a theorem expressing µ(1, Y ) in terms of the blocks of the sum decomposition of Y .en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectSparse matrix|Submatrix|Möbius functionen_US
dc.subjectŘídká matice|Podmatice|Möbiova funkcecs_CZ
dc.titleMöbius function of matrix posetsen_US
dc.typebakalářská prácecs_CZ
dcterms.created2023
dcterms.dateAccepted2023-06-29
dc.description.departmentInformatický ústav Univerzity Karlovycs_CZ
dc.description.departmentComputer Science Institute of Charles Universityen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId252669
dc.title.translatedMöbiova funkce maticových uspořádánícs_CZ
dc.contributor.refereeKantor, Ida
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineInformatika se specializací Programování a vývoj softwarecs_CZ
thesis.degree.disciplineComputer Science with specialisation in Programming and Software Developmenten_US
thesis.degree.programInformatikacs_CZ
thesis.degree.programComputer Scienceen_US
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Informatický ústav Univerzity Karlovycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Computer Science Institute of Charles Universityen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csInformatika se specializací Programování a vývoj softwarecs_CZ
uk.degree-discipline.enComputer Science with specialisation in Programming and Software Developmenten_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.enIn this work, we focus on the M¨obius function µ(X, Y ) of four variants of containment posets of sparse matrices, for which the M¨obius function has not been studied before. A sparse matrix is a binary matrix containing at most one 1-cell in each row and column. We focus mainly on the dominated scattered containment, where X ≤ Y if X can be created from Y by removing some rows and columns and by changing some 1-cells to 0-cells. We consider this poset to be a generalization of the permutation poset, as for permutations σ and π, if σ ≤ π, then the permutation matrices Mσ and Mπ satisfy Mσ ≤ Mπ. For the dominated scattered containment, we study the values of the M¨obius function on intervals of the form [1, Y ], where 1 is the 1 × 1 matrix consisting of a single 1-cell. We show that the situation when Y contains a zero row or column can be reduced to a situation when Y has no such zero line, that is, Y is a permutation matrix. For a permutation matrix Y , we derived a theorem expressing µ(1, Y ) in terms of the blocks of the sum decomposition of Y .en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Informatický ústav Univerzity Karlovycs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV