dc.contributor.advisor | Švancara, Jiří | |
dc.creator | Ramesh, Samyuktha | |
dc.date.accessioned | 2023-07-25T01:17:25Z | |
dc.date.available | 2023-07-25T01:17:25Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/183059 | |
dc.description.abstract | - Samyuktha Ramesh Thesis Title: Reduction-based Solvers for Multi-agent Pathfinding: Comparing Different Models Multi-agent path finding (MAPF) is the problem of navigating a set of agents from their starting position to their respective goal position without any collisions. In this thesis, we provide an overview of the current approaches to solving MAPF. We implement six different encodings found in the literature using the Python programming language and the Glucose3 SAT solver. We run experiments on maps of different types and sizes to compare the performances of the encodings. | en_US |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | multi-agent pathfinding|reduction-based solvers|SAT|makespan | en_US |
dc.subject | multi-agent pathfinding|reduction-based solvers|SAT|makespan | cs_CZ |
dc.title | Reduction-based Solvers for Multi-agent Pathfinding: Comparing Different Models | en_US |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2023 | |
dcterms.dateAccepted | 2023-06-29 | |
dc.description.department | Katedra teoretické informatiky a matematické logiky | cs_CZ |
dc.description.department | Department of Theoretical Computer Science and Mathematical Logic | en_US |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 254076 | |
dc.title.translated | Redukční řešiče pro multiagentní plánování cest: porovnání modelů | cs_CZ |
dc.contributor.referee | Barták, Roman | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | Computer Science with specialisation in Artificial Intelligence | cs_CZ |
thesis.degree.discipline | Computer Science with specialisation in Artificial Intelligence | en_US |
thesis.degree.program | Computer Science | cs_CZ |
thesis.degree.program | Computer Science | en_US |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra teoretické informatiky a matematické logiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Theoretical Computer Science and Mathematical Logic | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Computer Science with specialisation in Artificial Intelligence | cs_CZ |
uk.degree-discipline.en | Computer Science with specialisation in Artificial Intelligence | en_US |
uk.degree-program.cs | Computer Science | cs_CZ |
uk.degree-program.en | Computer Science | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.en | - Samyuktha Ramesh Thesis Title: Reduction-based Solvers for Multi-agent Pathfinding: Comparing Different Models Multi-agent path finding (MAPF) is the problem of navigating a set of agents from their starting position to their respective goal position without any collisions. In this thesis, we provide an overview of the current approaches to solving MAPF. We implement six different encodings found in the literature using the Python programming language and the Glucose3 SAT solver. We run experiments on maps of different types and sizes to compare the performances of the encodings. | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra teoretické informatiky a matematické logiky | cs_CZ |
thesis.grade.code | 1 | |
uk.publication-place | Praha | cs_CZ |
uk.thesis.defenceStatus | O | |