Random Dynamical Systems and Their Applications
Náhodné dynamické systémy a jejich aplikace
diplomová práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/184039Identifikátory
SIS: 259636
Kolekce
- Kvalifikační práce [11244]
Autor
Vedoucí práce
Oponent práce
Čoupek, Petr
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Pravděpodobnost, matematická statistika a ekonometrie
Katedra / ústav / klinika
Katedra pravděpodobnosti a matematické statistiky
Datum obhajoby
5. 9. 2023
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Výborně
Klíčová slova (česky)
Náhodný dynamický systém|kocyklus|stochastická diferenciální rovniceKlíčová slova (anglicky)
Random Dynamical System|Cocycle|Stochastic Differential EquationThis thesis extends the existing results in the theory of random dynamical systems driven by fractional noise in Hilbert space. In particular, it broadens the scope of ap- plicability of the results presented by Maria J. Garrido-Atienza, Bohdan Maslowski and Jana Snuparkova in Garrido-Atienza et al. [2016] for fractional noise whose sample paths have a Hölder exponent greater than 1/2. The main object of the research is the following stochastic equation: d u(t) = (A(t)u(t) + F(u(t)))d t + Bu(t)d ω(t), u(0) = u0 ∈ V, where (V, ∥ · ∥V ) is a separable Hilbert space, ω is a stochastic process and the stochastic integral is understood in the Zähle sense. This thesis contains the proof of a Fubini-type theorem for integration in the sense of Zähle. It is shown that the assumption about ergodicity for the underlying fractional noise in Garrido-Atienza et al. [2016] is redundant and the statements about random dynamical systems which are generated by the solution of the equation and its random attractor remain valid. The thesis also contains the proof of the existence and uniqueness of the solution to the equation above. 1