Zobrazit minimální záznam

Vícejazyčná, multimodální detekce humoru ve stand-up komedii
dc.contributor.advisorHolub, Martin
dc.creatorKuznetsova, Anna
dc.date.accessioned2023-11-06T23:03:17Z
dc.date.available2023-11-06T23:03:17Z
dc.date.issued2023
dc.identifier.urihttp://hdl.handle.net/20.500.11956/184193
dc.description.abstractThis thesis focuses on the multimodal and multilingual detection of humor in stand- up comedy videos. A novel multilingual dataset was collected, primarily targeting the Russian language, to address the lack of specific multimodal datasets for humor detection in this language. The dataset was obtained from stand-up comedy videos with subtitles sourced from YouTube. The thesis investigates various aspects of the data preparation process, including word-level forced alignment, segmentation, and labeling with laughter detection. Two automatic laughter detection approaches are explored: the peak detection approach, which employs preprocessed voiceless audio and an energy-based peak detec- tion algorithm with clusterization filtering, and the machine learning approach, which utilizes a pretrained model to detect laughter presence and duration. Results indicate that for now the machine learning approach outperforms the peak detection approach in terms of accuracy and generalization, however the peak detection approach is considered promising. Additionally, thesis delves into the unimodal textual and multimodal humor detection on the new dataset. The results demonstrate the ability of neural models to capture humour in both languages even in the textual only setting. While multimodal experiments showed that even...en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjecthumor|automatická detekce|stand-up comedie|vícejazyčný|multimodálnícs_CZ
dc.subjecthumour|automatic detection|stand-up comedy|multilingual|multimodalen_US
dc.titleMultilingual Multimodal Detection of Humour in Stand-Up Comedyen_US
dc.typediplomová prácecs_CZ
dcterms.created2023
dcterms.dateAccepted2023-09-06
dc.description.departmentÚstav formální a aplikované lingvistikycs_CZ
dc.description.departmentInstitute of Formal and Applied Linguisticsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId257821
dc.title.translatedVícejazyčná, multimodální detekce humoru ve stand-up komediics_CZ
dc.contributor.refereeKrubiński, Mateusz
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineComputer Science - Language Technologies and Computational Linguisticscs_CZ
thesis.degree.disciplineComputer Science - Language Technologies and Computational Linguisticsen_US
thesis.degree.programComputer Science - Language Technologies and Computational Linguisticscs_CZ
thesis.degree.programComputer Science - Language Technologies and Computational Linguisticsen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Ústav formální a aplikované lingvistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Institute of Formal and Applied Linguisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csComputer Science - Language Technologies and Computational Linguisticscs_CZ
uk.degree-discipline.enComputer Science - Language Technologies and Computational Linguisticsen_US
uk.degree-program.csComputer Science - Language Technologies and Computational Linguisticscs_CZ
uk.degree-program.enComputer Science - Language Technologies and Computational Linguisticsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.enThis thesis focuses on the multimodal and multilingual detection of humor in stand- up comedy videos. A novel multilingual dataset was collected, primarily targeting the Russian language, to address the lack of specific multimodal datasets for humor detection in this language. The dataset was obtained from stand-up comedy videos with subtitles sourced from YouTube. The thesis investigates various aspects of the data preparation process, including word-level forced alignment, segmentation, and labeling with laughter detection. Two automatic laughter detection approaches are explored: the peak detection approach, which employs preprocessed voiceless audio and an energy-based peak detec- tion algorithm with clusterization filtering, and the machine learning approach, which utilizes a pretrained model to detect laughter presence and duration. Results indicate that for now the machine learning approach outperforms the peak detection approach in terms of accuracy and generalization, however the peak detection approach is considered promising. Additionally, thesis delves into the unimodal textual and multimodal humor detection on the new dataset. The results demonstrate the ability of neural models to capture humour in both languages even in the textual only setting. While multimodal experiments showed that even...en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Ústav formální a aplikované lingvistikycs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV