dc.contributor.advisor | Komárek, Arnošt | |
dc.creator | Janečková, Lucie | |
dc.date.accessioned | 2023-11-06T16:34:18Z | |
dc.date.available | 2023-11-06T16:34:18Z | |
dc.date.issued | 2023 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/184379 | |
dc.description.abstract | This thesis deals with classification based on mixture models, mainly on models finite normal. At first, there are introduced basic definitions and characteristics of finite mix- tures. Afterwards there is described the maximum likelihood method and her obstacles in context of finite mixtures, which we are using for unknown parameters estimation. Then there is described EM algorithm, that is used to obtain the maximum likelihood estimator and there are calculated the formulae for one iteration of EM algorithm. In the last part there is shown, how can finite normal mixtures be used for classification. 1 | en_US |
dc.description.abstract | Tato práce se zabývá klasifikací založenou na směsových modelech, a to převážně na modelech konečných normálních. Nejprve jsou zavedeny základní definice a vlastnosti konečných směsí. Následně je zde popsána metoda maximální věrohodnosti a její úskalí v kontextu konečných směsí, kterou použáváme pro odhadování neznámých parametrů. Poté je popsán EM algoritmus, který je používán pro získání maximálně věrohodných odhadů a explicitně spočteny vzorce pro jednu iteraci EM algoritmu. V poslední části je ukázáno, jak lze konečné normální směsi využít ke klasifikaci. 1 | cs_CZ |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | konečná směs|normální směs|klasifikace|EM algoritmus|věrohodnost | cs_CZ |
dc.subject | finite mixture|normal mixture|classification|EM algorithm|likelihood | en_US |
dc.title | Klasifikace založená na směsových modelech | cs_CZ |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2023 | |
dcterms.dateAccepted | 2023-09-07 | |
dc.description.department | Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.description.department | Department of Probability and Mathematical Statistics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 260411 | |
dc.title.translated | Classification based on mixture models | en_US |
dc.contributor.referee | Maciak, Matúš | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | Obecná matematika | cs_CZ |
thesis.degree.discipline | General Mathematics | en_US |
thesis.degree.program | Obecná matematika | cs_CZ |
thesis.degree.program | General Mathematics | en_US |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Probability and Mathematical Statistics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Obecná matematika | cs_CZ |
uk.degree-discipline.en | General Mathematics | en_US |
uk.degree-program.cs | Obecná matematika | cs_CZ |
uk.degree-program.en | General Mathematics | en_US |
thesis.grade.cs | Dobře | cs_CZ |
thesis.grade.en | Good | en_US |
uk.abstract.cs | Tato práce se zabývá klasifikací založenou na směsových modelech, a to převážně na modelech konečných normálních. Nejprve jsou zavedeny základní definice a vlastnosti konečných směsí. Následně je zde popsána metoda maximální věrohodnosti a její úskalí v kontextu konečných směsí, kterou použáváme pro odhadování neznámých parametrů. Poté je popsán EM algoritmus, který je používán pro získání maximálně věrohodných odhadů a explicitně spočteny vzorce pro jednu iteraci EM algoritmu. V poslední části je ukázáno, jak lze konečné normální směsi využít ke klasifikaci. 1 | cs_CZ |
uk.abstract.en | This thesis deals with classification based on mixture models, mainly on models finite normal. At first, there are introduced basic definitions and characteristics of finite mix- tures. Afterwards there is described the maximum likelihood method and her obstacles in context of finite mixtures, which we are using for unknown parameters estimation. Then there is described EM algorithm, that is used to obtain the maximum likelihood estimator and there are calculated the formulae for one iteration of EM algorithm. In the last part there is shown, how can finite normal mixtures be used for classification. 1 | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
thesis.grade.code | 3 | |
uk.publication-place | Praha | cs_CZ |
uk.thesis.defenceStatus | O | |