Zobrazit minimální záznam

Pell's equation, continued fractions and Diophantine approximations of irrational numbers
dc.contributor.advisorBeran, Filip
dc.creatorKodýtek, Jakub
dc.date.accessioned2023-11-06T16:23:43Z
dc.date.available2023-11-06T16:23:43Z
dc.date.issued2023
dc.identifier.urihttp://hdl.handle.net/20.500.11956/184902
dc.description.abstractThis bachelor's thesis deals with Pell's equation, while clearly presenting structured information from studied domestic and foreign books, articles, and other sources. The goal of this thesis is to create study material primarily for university students but also for inquisitive high school students, and thus explain as intuitively as possible what Pell's equation is, how to find its solutions, and how it is related, for example, to continued fractions, approximations of irrational numbers, and invertible elements in Z[√n ]. The main motivation for solving Pell's equation throughout the work is specifically that its solutions give best approximations of irrational square roots. Pell's equation is presented in a brief historical context. Further, it is proved that there is a non-trivial integer solution for every Pell equation, and the theory of continued fractions is used to find it. To make the creation of continued fractions easier, the so-called Tenner's algorithm is introduced. Specifically, the search for a solution to Pell's equation is derived using convergents and the periodicity of continued fractions of irrational roots. Subsequently, the structure of the solution is described: it is proved that there is a so-called minimal solution that generates all positive solutions, and a set of...en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Pedagogická fakultacs_CZ
dc.subjectPellova rovnicecs_CZ
dc.subjectřetězové zlomkycs_CZ
dc.subjectdiofantické aproximacecs_CZ
dc.subjectteorie číselcs_CZ
dc.subjectPell's equationen_US
dc.subjectcontinued fractionsen_US
dc.subjectDiophantine approximationsen_US
dc.subjectnumber theoryen_US
dc.titlePellova rovnice, řetězové zlomky a diofantické aproximace iracionálních číselcs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2023
dcterms.dateAccepted2023-09-11
dc.description.departmentKatedra matematiky a didaktiky matematikycs_CZ
dc.description.facultyPedagogická fakultacs_CZ
dc.description.facultyFaculty of Educationen_US
dc.identifier.repId260160
dc.title.translatedPell's equation, continued fractions and Diophantine approximations of irrational numbersen_US
dc.contributor.refereeJančařík, Antonín
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineAnglický jazyk se zaměřením na vzdělávání - Matematika se zaměřením na vzdělávánícs_CZ
thesis.degree.disciplineEnglish Language Oriented at Education - Mathematics Oriented at Educationen_US
thesis.degree.programSpecializace v pedagogicecs_CZ
thesis.degree.programSpecialization in Educationen_US
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csPedagogická fakulta::Katedra matematiky a didaktiky matematikycs_CZ
uk.faculty-name.csPedagogická fakultacs_CZ
uk.faculty-name.enFaculty of Educationen_US
uk.faculty-abbr.csPedFcs_CZ
uk.degree-discipline.csAnglický jazyk se zaměřením na vzdělávání - Matematika se zaměřením na vzdělávánícs_CZ
uk.degree-discipline.enEnglish Language Oriented at Education - Mathematics Oriented at Educationen_US
uk.degree-program.csSpecializace v pedagogicecs_CZ
uk.degree-program.enSpecialization in Educationen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.enThis bachelor's thesis deals with Pell's equation, while clearly presenting structured information from studied domestic and foreign books, articles, and other sources. The goal of this thesis is to create study material primarily for university students but also for inquisitive high school students, and thus explain as intuitively as possible what Pell's equation is, how to find its solutions, and how it is related, for example, to continued fractions, approximations of irrational numbers, and invertible elements in Z[√n ]. The main motivation for solving Pell's equation throughout the work is specifically that its solutions give best approximations of irrational square roots. Pell's equation is presented in a brief historical context. Further, it is proved that there is a non-trivial integer solution for every Pell equation, and the theory of continued fractions is used to find it. To make the creation of continued fractions easier, the so-called Tenner's algorithm is introduced. Specifically, the search for a solution to Pell's equation is derived using convergents and the periodicity of continued fractions of irrational roots. Subsequently, the structure of the solution is described: it is proved that there is a so-called minimal solution that generates all positive solutions, and a set of...en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Pedagogická fakulta, Katedra matematiky a didaktiky matematikycs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV