Zobrazit minimální záznam

Analýza dopadů opatření pomocí metody Causal Forest
dc.contributor.advisorZacchia, Paolo
dc.creatorBakirov, Aslan
dc.date.accessioned2023-11-06T14:22:59Z
dc.date.available2023-11-06T14:22:59Z
dc.date.issued2023
dc.identifier.urihttp://hdl.handle.net/20.500.11956/185237
dc.description.abstractRevisiting Treatment Effects with Causal Forests Aslan Bakirov Abstract This thesis focuses on the application of Causal Forests, a prominent causal machine learning algorithm, to estimate heterogeneous treatment effects in complex socio-economic phenomenon. Causal Forests leverage the capabilities of random forests to partition the high-dimensional covariate space and identify subgroups where the effect of an intervention remains constant. This approach is particularly valuable when dealing with heterogeneous causal effects, where a uniform measure of gains for all is an unrealistic assumption. Unlike traditional manual methods that are susceptible to p-hacking, the algorithm objectively uncovers nuanced treatment effect variations through data-driven analysis. The thesis demonstrates the algorithm's potential in exploring causal effects and providing valuable policy insights. An empirical illustration showcases the modeling of a complex socio-economic phenomenon, such as the gender wage gap, and leverages Causal Forests to extract policy learning from the identified heterogeneity. The study highlights the algorithm's contribution to credible and robust causal inference, bridging the gap between traditional decomposition methods and data-informed heterogeneity analysis. Keywords: Causal machine learning,...en_US
dc.description.abstractAnalýza dopadů opatření pomocí metody Causal Forest Aslan Bakirov Abstrakt Tato diplomová práce se zaměřuje na aplikaci Causal Forests, prominentního algoritmu pro kauzální strojové učení, s cílem kvantifikovat heterogenní dopady různých opatření v rámci komplexních socioekonomických jevů. Předností algoritmu Causal Forest je schopnost při využití velkého množství vysvětlujících proměnných identifikovat takové podskupiny, pro které jsou efekty kauzálních jevů konstantní. Tento přístup je zvláště cenný při evaluaci dopadů takových opatření, u kterých se efekt napříč podskupinami daného vzorku výrazně liší, a u nichž je předpoklad konstantních dopadů tudíž nerealistický. Na rozdíl od tradičních manuálních metodam, které mohou být jednoduše zneužívány k tzv. p-hackingu, popsaný algoritmus objektivně identifikuje rozdíly v dopadech mezi testovanými podskupinami. Diplomová práce dále demonstruje, jak lze daný algoritmus využít k analýze heterogenních kauzálních efektů a studiu dopadů veřejných politik. Má práce pak na konkrétním příkladu gender wage gap ilustruje aplikaci algoritmu při modelování komplexních socioekonomických jevů. Studie tak jasně demonstruje výhody algoritmu při analýze dopadů opatření a zajištění vyšší robustnosti výsledků. Vyplňuje tak mezeru mezi odbornými poznatky vážících se k tradičním...cs_CZ
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Fakulta sociálních vědcs_CZ
dc.titleRevisiting Treatment Effects with Causal Forestsen_US
dc.typediplomová prácecs_CZ
dcterms.created2023
dcterms.dateAccepted2023-09-11
dc.description.departmentCERGEcs_CZ
dc.description.facultyFakulta sociálních vědcs_CZ
dc.description.facultyFaculty of Social Sciencesen_US
dc.identifier.repId250288
dc.title.translatedAnalýza dopadů opatření pomocí metody Causal Forestcs_CZ
dc.contributor.refereeMenzel, Andreas
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineEkonomický výzkumcs_CZ
thesis.degree.disciplineMaster in Economic Researchen_US
thesis.degree.programEkonomický výzkumcs_CZ
thesis.degree.programMaster in Economic Researchen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csFakulta sociálních věd::CERGEcs_CZ
uk.faculty-name.csFakulta sociálních vědcs_CZ
uk.faculty-name.enFaculty of Social Sciencesen_US
uk.faculty-abbr.csFSVcs_CZ
uk.degree-discipline.csEkonomický výzkumcs_CZ
uk.degree-discipline.enMaster in Economic Researchen_US
uk.degree-program.csEkonomický výzkumcs_CZ
uk.degree-program.enMaster in Economic Researchen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csAnalýza dopadů opatření pomocí metody Causal Forest Aslan Bakirov Abstrakt Tato diplomová práce se zaměřuje na aplikaci Causal Forests, prominentního algoritmu pro kauzální strojové učení, s cílem kvantifikovat heterogenní dopady různých opatření v rámci komplexních socioekonomických jevů. Předností algoritmu Causal Forest je schopnost při využití velkého množství vysvětlujících proměnných identifikovat takové podskupiny, pro které jsou efekty kauzálních jevů konstantní. Tento přístup je zvláště cenný při evaluaci dopadů takových opatření, u kterých se efekt napříč podskupinami daného vzorku výrazně liší, a u nichž je předpoklad konstantních dopadů tudíž nerealistický. Na rozdíl od tradičních manuálních metodam, které mohou být jednoduše zneužívány k tzv. p-hackingu, popsaný algoritmus objektivně identifikuje rozdíly v dopadech mezi testovanými podskupinami. Diplomová práce dále demonstruje, jak lze daný algoritmus využít k analýze heterogenních kauzálních efektů a studiu dopadů veřejných politik. Má práce pak na konkrétním příkladu gender wage gap ilustruje aplikaci algoritmu při modelování komplexních socioekonomických jevů. Studie tak jasně demonstruje výhody algoritmu při analýze dopadů opatření a zajištění vyšší robustnosti výsledků. Vyplňuje tak mezeru mezi odbornými poznatky vážících se k tradičním...cs_CZ
uk.abstract.enRevisiting Treatment Effects with Causal Forests Aslan Bakirov Abstract This thesis focuses on the application of Causal Forests, a prominent causal machine learning algorithm, to estimate heterogeneous treatment effects in complex socio-economic phenomenon. Causal Forests leverage the capabilities of random forests to partition the high-dimensional covariate space and identify subgroups where the effect of an intervention remains constant. This approach is particularly valuable when dealing with heterogeneous causal effects, where a uniform measure of gains for all is an unrealistic assumption. Unlike traditional manual methods that are susceptible to p-hacking, the algorithm objectively uncovers nuanced treatment effect variations through data-driven analysis. The thesis demonstrates the algorithm's potential in exploring causal effects and providing valuable policy insights. An empirical illustration showcases the modeling of a complex socio-economic phenomenon, such as the gender wage gap, and leverages Causal Forests to extract policy learning from the identified heterogeneity. The study highlights the algorithm's contribution to credible and robust causal inference, bridging the gap between traditional decomposition methods and data-informed heterogeneity analysis. Keywords: Causal machine learning,...en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Fakulta sociálních věd, CERGEcs_CZ
thesis.grade.codeA
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV