Zobrazit minimální záznam

Equidecomposability
dc.contributor.advisorHalas, Zdeněk
dc.creatorValkoun, Matyáš
dc.date.accessioned2023-11-07T19:29:55Z
dc.date.available2023-11-07T19:29:55Z
dc.date.issued2023
dc.identifier.urihttp://hdl.handle.net/20.500.11956/185605
dc.description.abstractTitle: Equidecomposability Author: Matyáš Valkoun Department: Department of Mathematics Education Supervisor: Mgr. Zdeněk Halas, DiS., Ph.D., Department of Mathematics Education Abstract: This bachelor thesis focuses on the area of polygons and its definition by equidecomposability. In the plane ρ a simple polygon and its area is defined and the notion of equidecomposability is introduced. Since any two equidecomposable polygons have equal areas, a question arises if the opposite is also true: are any two polygons of equal area equidecomposable? That is the formulation of the Wallace-Bolyai-Gerwein theorem, its detailed proof is presented in this text. Thus the notions of equidecom- posability and equal area are equivalent. At the end of the thesis it is briefly examined if it is possible to use equidecomposability in the third dimension to define the volume of a polyhedron. Keywords: Area of a polygon, equidecomposability, Wallace-Bolyai-Gerwein theorem, triangulation 1en_US
dc.description.abstractNázev práce: Ekvidekomposabilita Autor: Matyáš Valkoun Katedra: Katedra didaktiky matematiky Vedoucí bakalářské práce: Mgr. Zdeněk Halas, DiS., Ph.D., Katedra didaktiky matem- atiky Abstrakt: Tato bakalářská práce se zaměřujeme na obsah mnohoúhelníku a jeho zave- dení pomocí ekvidekomposability. Nejprve je v rovině ρ je definován mnohoúhelník a jeho obsah, dále je zaveden pojem ekvidekomposabilita. Ukazuje se, že ekvidekompos- abilní (shodně rozložitelné) mnohoúhelníky mají stejný obsah. Nastává tak otázka, zda platí i opačné tvrzení: jsou dva mnohoúhelníky stejného obsahu shodně rozložitelné? To je znění Wallace-Bolyai-Gerweinovy věty, jejíž důkaz je v práci podrobně rozepsán. Díky existenci společného rozkladu dvou mnohoúhelníků stejného obsahu je tak rovnost ob- sahu a ekvidekomposabilita v rovině ekvivalentní. V závěru práce je zkoumána otázka, zda je možné využít ekvidekomposabilitu i v prostoru a zavést pomocí ní objem mno- hostěnu. Klíčová slova: Obsah mnohoúhelníku, ekvidekomposabilita, Wallace-Bolyai-Gerweinova věta, rozklad mnohoúhelníku na trojúhelníky 1cs_CZ
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectArea of a polygonen_US
dc.subjectequidecomposabilityen_US
dc.subjectWallace-Bolyai-Gerwein theoremen_US
dc.subjecttriangulationen_US
dc.subjectObsah mnohoúhelníkucs_CZ
dc.subjectekvidekomposabilitacs_CZ
dc.subjectWallace-Bolyai-Gerweinova větacs_CZ
dc.subjectrozklad mnohoúhelníku na trojúhelníkycs_CZ
dc.titleEkvidekomposabilitacs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2023
dcterms.dateAccepted2023-09-14
dc.description.departmentKatedra didaktiky matematikycs_CZ
dc.description.departmentDepartment of Mathematics Educationen_US
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId244343
dc.title.translatedEquidecomposabilityen_US
dc.contributor.refereeRmoutil, Martin
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineChemie se zaměřením na vzdělávání - Matematika se zaměřením na vzdělávánícs_CZ
thesis.degree.disciplineChemistry Oriented at Education - Mathematics Oriented at Educationen_US
thesis.degree.programChemistryen_US
thesis.degree.programChemiecs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra didaktiky matematikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Mathematics Educationen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csChemie se zaměřením na vzdělávání - Matematika se zaměřením na vzdělávánícs_CZ
uk.degree-discipline.enChemistry Oriented at Education - Mathematics Oriented at Educationen_US
uk.degree-program.csChemiecs_CZ
uk.degree-program.enChemistryen_US
thesis.grade.csVelmi dobřecs_CZ
thesis.grade.enVery gooden_US
uk.abstract.csNázev práce: Ekvidekomposabilita Autor: Matyáš Valkoun Katedra: Katedra didaktiky matematiky Vedoucí bakalářské práce: Mgr. Zdeněk Halas, DiS., Ph.D., Katedra didaktiky matem- atiky Abstrakt: Tato bakalářská práce se zaměřujeme na obsah mnohoúhelníku a jeho zave- dení pomocí ekvidekomposability. Nejprve je v rovině ρ je definován mnohoúhelník a jeho obsah, dále je zaveden pojem ekvidekomposabilita. Ukazuje se, že ekvidekompos- abilní (shodně rozložitelné) mnohoúhelníky mají stejný obsah. Nastává tak otázka, zda platí i opačné tvrzení: jsou dva mnohoúhelníky stejného obsahu shodně rozložitelné? To je znění Wallace-Bolyai-Gerweinovy věty, jejíž důkaz je v práci podrobně rozepsán. Díky existenci společného rozkladu dvou mnohoúhelníků stejného obsahu je tak rovnost ob- sahu a ekvidekomposabilita v rovině ekvivalentní. V závěru práce je zkoumána otázka, zda je možné využít ekvidekomposabilitu i v prostoru a zavést pomocí ní objem mno- hostěnu. Klíčová slova: Obsah mnohoúhelníku, ekvidekomposabilita, Wallace-Bolyai-Gerweinova věta, rozklad mnohoúhelníku na trojúhelníky 1cs_CZ
uk.abstract.enTitle: Equidecomposability Author: Matyáš Valkoun Department: Department of Mathematics Education Supervisor: Mgr. Zdeněk Halas, DiS., Ph.D., Department of Mathematics Education Abstract: This bachelor thesis focuses on the area of polygons and its definition by equidecomposability. In the plane ρ a simple polygon and its area is defined and the notion of equidecomposability is introduced. Since any two equidecomposable polygons have equal areas, a question arises if the opposite is also true: are any two polygons of equal area equidecomposable? That is the formulation of the Wallace-Bolyai-Gerwein theorem, its detailed proof is presented in this text. Thus the notions of equidecom- posability and equal area are equivalent. At the end of the thesis it is briefly examined if it is possible to use equidecomposability in the third dimension to define the volume of a polyhedron. Keywords: Area of a polygon, equidecomposability, Wallace-Bolyai-Gerwein theorem, triangulation 1en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra didaktiky matematikycs_CZ
thesis.grade.code2
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV