Zobrazit minimální záznam

Předpověď růstu realného HDP evropských ekonomik na základě strojového učení
dc.contributor.advisorKočenda, Evžen
dc.creatorBaylan, Su Hazal
dc.date.accessioned2023-11-08T00:01:20Z
dc.date.available2023-11-08T00:01:20Z
dc.date.issued2023
dc.identifier.urihttp://hdl.handle.net/20.500.11956/186154
dc.description.abstractThis thesis analyzes the nowcasting of quarterly GDP growth for nine European economies using a dynamic factor model and four different machine learning models. These machine learning models are as follows: Ridge, Lasso, Elastic Net, and Random Forest. The data includes ten hard and fifteen soft indicators for each country in order to calculate GDP for each nowcasting iteration for pre-covid and covid periods. For machine learning, models are fed with the extracted factors that are obtained from the dynamic factor model, and for all nowcasting models expanding window approach is selected to estimate nowcasting iterations. The empirical finding indicates that overall machine learning models provide better forecasting accuracy compared to dynamic factor models and benchmark models for more stable periods, such as the period before Covid-19. On the other hand, for more volatile periods where the uncertainties are higher in economies, the dynamic factor model outperforms machine learning models in order to nowcast GDP growth. In addition to this, Random Forest is able to outperform all the alternative models for small economies such as Slovenia and Portugal for stable periods. JEL Classification C01, C33, C53, C83, E37 Keywords Nowcasting, DFM, Ridge, Lasso, Elastic Net, Random Forest Title Nowcasting...en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Fakulta sociálních vědcs_CZ
dc.subjectNowcastingen_US
dc.subjectDFMen_US
dc.subjectRidgeen_US
dc.subjectLassoen_US
dc.subjectElastic Neten_US
dc.subjectRandom Foresten_US
dc.titleNowcasting the Real GDP Growth of the European Economies based on Machine Learningen_US
dc.typediplomová prácecs_CZ
dcterms.created2023
dcterms.dateAccepted2023-09-21
dc.description.departmentInstitut ekonomických studiícs_CZ
dc.description.departmentInstitute of Economic Studiesen_US
dc.description.facultyFaculty of Social Sciencesen_US
dc.description.facultyFakulta sociálních vědcs_CZ
dc.identifier.repId248327
dc.title.translatedPředpověď růstu realného HDP evropských ekonomik na základě strojového učenícs_CZ
dc.contributor.refereeBaruník, Jozef
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineEkonomie a financecs_CZ
thesis.degree.disciplineEconomics and Financeen_US
thesis.degree.programEconomicsen_US
thesis.degree.programEkonomické teoriecs_CZ
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csFakulta sociálních věd::Institut ekonomických studiícs_CZ
uk.taxonomy.organization-enFaculty of Social Sciences::Institute of Economic Studiesen_US
uk.faculty-name.csFakulta sociálních vědcs_CZ
uk.faculty-name.enFaculty of Social Sciencesen_US
uk.faculty-abbr.csFSVcs_CZ
uk.degree-discipline.csEkonomie a financecs_CZ
uk.degree-discipline.enEconomics and Financeen_US
uk.degree-program.csEkonomické teoriecs_CZ
uk.degree-program.enEconomicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.enThis thesis analyzes the nowcasting of quarterly GDP growth for nine European economies using a dynamic factor model and four different machine learning models. These machine learning models are as follows: Ridge, Lasso, Elastic Net, and Random Forest. The data includes ten hard and fifteen soft indicators for each country in order to calculate GDP for each nowcasting iteration for pre-covid and covid periods. For machine learning, models are fed with the extracted factors that are obtained from the dynamic factor model, and for all nowcasting models expanding window approach is selected to estimate nowcasting iterations. The empirical finding indicates that overall machine learning models provide better forecasting accuracy compared to dynamic factor models and benchmark models for more stable periods, such as the period before Covid-19. On the other hand, for more volatile periods where the uncertainties are higher in economies, the dynamic factor model outperforms machine learning models in order to nowcast GDP growth. In addition to this, Random Forest is able to outperform all the alternative models for small economies such as Slovenia and Portugal for stable periods. JEL Classification C01, C33, C53, C83, E37 Keywords Nowcasting, DFM, Ridge, Lasso, Elastic Net, Random Forest Title Nowcasting...en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Fakulta sociálních věd, Institut ekonomických studiícs_CZ
thesis.grade.codeA
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV