Zobrazit minimální záznam

Třídy modulů motivované algebraickou geometrií
dc.contributor.advisorTrlifaj, Jan
dc.creatorSlávik, Alexander
dc.date.accessioned2024-04-08T08:02:30Z
dc.date.available2024-04-08T08:02:30Z
dc.date.issued2024
dc.identifier.urihttp://hdl.handle.net/20.500.11956/187500
dc.description.abstractThis thesis summarises the author's results in representation theory of rings and schemes, obtained with several collaborators. First, we show that for a quasicompact semiseparated scheme X, the derived category of very flat quasicoherent sheaves is equivalent to the derived category of flat quasicoherent sheaves, and if X is affine, this is further equivalent to the homotopy category of projectives. Next, we prove that if R is a commutative Noetherian ring, then every countably generated flat module is quite flat, i.e., a direct summand of a transfinite extension of localizations of R in countable multiplicative subsets. Further, we investigate the relations between the geometric and categorical purity in categories of sheaves; we give a characterization of indecomposable geometric pure-injectives in both the quasicoherent and non-quasicoherent case. In partic- ular, we describe the Ziegler spectrum and its geometric part for the category of quasicoherent sheaves on the projective line over a field. The final result is the equivalence of the following statements for a quasicompact quasiseparated scheme X: (1) the category QCoh(X) of all quasicoherent sheaves on X has a flat generator; (2) for every injective object E of QCoh(X), the internal Hom functor into E is exact; (3) for some injective...en_US
dc.description.abstractTato práce shrnuje autorovy výsledky v teorii reprezentací okruhů a schémat, získané s několika spolupracovníky. Nejprve pro kvazikompaktní semise- parované schéma X dokazujeme, že derivovaná kategorie velmi plochých kvaziko- herentních svazků je ekvivalentní derivované kategorii plochých kvazikoherentních svazků a pokud je X afinní, je toto dále ekvivalentní homotopické kategorii pro- jektivních modulů. Dále ukazujeme, že nad komutativním Noetherovským okru- hem R je každý spočetně generovaný plochý modul je celkem plochý, tj. direktní sčítanec transfinitní extenze lokalizací R ve spočetných multiplikativních množi- nách. Posléze zkoumáme vztah geometrické a kategoriální čistoty v kategoriích svazků; charakterizujeme nerozložitelné geometricky čistě-injektivní svazky v ka- tegoriích kvazikoherentních i všech svazků. Zcela popisujeme Zieglerovo spektrum i jeho geometrickou část pro kategorii kvazikoherentních svazků na projektivní přímce nad tělesem. Posledním výsledkem je ekvivalence následujících tvrzení pro kvazikompaktní kvaziseparované schéma X: (1) kategorie QCoh(X) všech kvazi- koherentních svazků na X má plochý generátor; (2) pro každý injektivní objekt E ∈ QCoh(X) je interní Hom funktor do E je exaktní; (3) pro nějaký injektivní kogenerátor E ∈ QCoh(X) je interní Hom funktor do E je...cs_CZ
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectplochý modulcs_CZ
dc.subjectkvazikoherentní svazekcs_CZ
dc.subjecttransfinitní extenzecs_CZ
dc.subjectQuillenovská ekvivalencecs_CZ
dc.subjectZieglerovo spektrumcs_CZ
dc.subjectflat moduleen_US
dc.subjectquasicoherent sheafen_US
dc.subjecttransfinite extensionen_US
dc.subjectQuillen equivalenceen_US
dc.subjectZiegler spectrumen_US
dc.titleClasses of modules arising in algebraic geometryen_US
dc.typerigorózní prácecs_CZ
dcterms.created2024
dcterms.dateAccepted2024-01-18
dc.description.departmentDepartment of Algebraen_US
dc.description.departmentKatedra algebrycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId266903
dc.title.translatedTřídy modulů motivované algebraickou geometriícs_CZ
thesis.degree.nameRNDr.
thesis.degree.levelrigorózní řízenícs_CZ
thesis.degree.disciplineMathematical structuresen_US
thesis.degree.disciplineMatematické strukturycs_CZ
thesis.degree.programMathematicsen_US
thesis.degree.programMatematikacs_CZ
uk.thesis.typerigorózní prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra algebrycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Algebraen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematické strukturycs_CZ
uk.degree-discipline.enMathematical structuresen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csUznánocs_CZ
thesis.grade.enRecognizeden_US
uk.abstract.csTato práce shrnuje autorovy výsledky v teorii reprezentací okruhů a schémat, získané s několika spolupracovníky. Nejprve pro kvazikompaktní semise- parované schéma X dokazujeme, že derivovaná kategorie velmi plochých kvaziko- herentních svazků je ekvivalentní derivované kategorii plochých kvazikoherentních svazků a pokud je X afinní, je toto dále ekvivalentní homotopické kategorii pro- jektivních modulů. Dále ukazujeme, že nad komutativním Noetherovským okru- hem R je každý spočetně generovaný plochý modul je celkem plochý, tj. direktní sčítanec transfinitní extenze lokalizací R ve spočetných multiplikativních množi- nách. Posléze zkoumáme vztah geometrické a kategoriální čistoty v kategoriích svazků; charakterizujeme nerozložitelné geometricky čistě-injektivní svazky v ka- tegoriích kvazikoherentních i všech svazků. Zcela popisujeme Zieglerovo spektrum i jeho geometrickou část pro kategorii kvazikoherentních svazků na projektivní přímce nad tělesem. Posledním výsledkem je ekvivalence následujících tvrzení pro kvazikompaktní kvaziseparované schéma X: (1) kategorie QCoh(X) všech kvazi- koherentních svazků na X má plochý generátor; (2) pro každý injektivní objekt E ∈ QCoh(X) je interní Hom funktor do E je exaktní; (3) pro nějaký injektivní kogenerátor E ∈ QCoh(X) je interní Hom funktor do E je...cs_CZ
uk.abstract.enThis thesis summarises the author's results in representation theory of rings and schemes, obtained with several collaborators. First, we show that for a quasicompact semiseparated scheme X, the derived category of very flat quasicoherent sheaves is equivalent to the derived category of flat quasicoherent sheaves, and if X is affine, this is further equivalent to the homotopy category of projectives. Next, we prove that if R is a commutative Noetherian ring, then every countably generated flat module is quite flat, i.e., a direct summand of a transfinite extension of localizations of R in countable multiplicative subsets. Further, we investigate the relations between the geometric and categorical purity in categories of sheaves; we give a characterization of indecomposable geometric pure-injectives in both the quasicoherent and non-quasicoherent case. In partic- ular, we describe the Ziegler spectrum and its geometric part for the category of quasicoherent sheaves on the projective line over a field. The final result is the equivalence of the following statements for a quasicompact quasiseparated scheme X: (1) the category QCoh(X) of all quasicoherent sheaves on X has a flat generator; (2) for every injective object E of QCoh(X), the internal Hom functor into E is exact; (3) for some injective...en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra algebrycs_CZ
thesis.grade.codeU
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusU


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV