Zobrazit minimální záznam

Sliby v problémech splnitelnosti
dc.contributor.advisorBarto, Libor
dc.creatorAsimi, Kristina
dc.date.accessioned2024-04-08T13:30:53Z
dc.date.available2024-04-08T13:30:53Z
dc.date.issued2023
dc.identifier.urihttp://hdl.handle.net/20.500.11956/187622
dc.description.abstractShort Abstract This thesis focuses on the complexity of the promise version of Constraint Satisfaction Problem (CSP) and its variants. The first study concerns the Promise Constraint Satisfaction Problem (PCSP), which extends the traditional CSP to include approximation variants of satisfiability and graph coloring. A specific PCSP, referred to as finding a valid Not-All-Equal solution to a 1-in- 3-SAT instance, has been shown by Barto [LICS '19] to lack finite tractability. While it can be reduced to a tractable CSP, the latter is necessarily over an infinite domain (unless P=NP). We say that such a PCSP is not finitely tractable and we initiate a systematic study of this phenomenon by giving a general necessary condition for finite tractability. Additionally, we characterize finite tractability within a class of templates. In the second study, we focus on the CSP in the context of first-order logic. The fixed-template CSP can be seen as the problem of deciding whether a given primitive positive first-order sentence is true in a fixed structure (also called model). We study a class of problems that generalizes the CSP simultaneously in two directions: we fix a set L of quantifiers and Boolean connectives, and we specify two versions of each constraint, one strong and one weak (making the promise version)....en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectproblém splnitelnosti omezujících podmínek|problém splnitelnosti omezujících podmínek se slib|konečná polynomiální řešitelnost|problém ověřování sentencí v modelechcs_CZ
dc.subjectConstraint satisfaction problem|promise constraint satisfaction problem|finite tractability|model checking problemen_US
dc.titlePromises in Satisfaction Problemsen_US
dc.typedizertační prácecs_CZ
dcterms.created2023
dcterms.dateAccepted2023-08-14
dc.description.departmentDepartment of Algebraen_US
dc.description.departmentKatedra algebrycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId201640
dc.title.translatedSliby v problémech splnitelnostics_CZ
dc.contributor.refereeBarnaby, Martin
dc.contributor.refereeŽivný, Stanislav
thesis.degree.namePh.D.
thesis.degree.leveldoktorskécs_CZ
thesis.degree.disciplineAlgebra, number theory, and mathematical logicen_US
thesis.degree.disciplineAlgebra, number theory, and mathematical logiccs_CZ
thesis.degree.programAlgebra, number theory, and mathematical logicen_US
thesis.degree.programAlgebra, number theory, and mathematical logiccs_CZ
uk.thesis.typedizertační prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra algebrycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Algebraen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csAlgebra, number theory, and mathematical logiccs_CZ
uk.degree-discipline.enAlgebra, number theory, and mathematical logicen_US
uk.degree-program.csAlgebra, number theory, and mathematical logiccs_CZ
uk.degree-program.enAlgebra, number theory, and mathematical logicen_US
thesis.grade.csProspěl/acs_CZ
thesis.grade.enPassen_US
uk.abstract.enShort Abstract This thesis focuses on the complexity of the promise version of Constraint Satisfaction Problem (CSP) and its variants. The first study concerns the Promise Constraint Satisfaction Problem (PCSP), which extends the traditional CSP to include approximation variants of satisfiability and graph coloring. A specific PCSP, referred to as finding a valid Not-All-Equal solution to a 1-in- 3-SAT instance, has been shown by Barto [LICS '19] to lack finite tractability. While it can be reduced to a tractable CSP, the latter is necessarily over an infinite domain (unless P=NP). We say that such a PCSP is not finitely tractable and we initiate a systematic study of this phenomenon by giving a general necessary condition for finite tractability. Additionally, we characterize finite tractability within a class of templates. In the second study, we focus on the CSP in the context of first-order logic. The fixed-template CSP can be seen as the problem of deciding whether a given primitive positive first-order sentence is true in a fixed structure (also called model). We study a class of problems that generalizes the CSP simultaneously in two directions: we fix a set L of quantifiers and Boolean connectives, and we specify two versions of each constraint, one strong and one weak (making the promise version)....en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra algebrycs_CZ
thesis.grade.codeP
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV