Evolution strategies for policy optimization in transformers
Evoluční strategie pro optimalizaci policy v transformerech
diplomová práce (OBHÁJENO)

Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/188488Identifikátory
SIS: 258206
Kolekce
- Kvalifikační práce [11326]
Autor
Vedoucí práce
Oponent práce
Pilát, Martin
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Informatika - Umělá inteligence
Katedra / ústav / klinika
Katedra teoretické informatiky a matematické logiky
Datum obhajoby
13. 2. 2024
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Výborně
Klíčová slova (česky)
Evoluční strategie|Transformery|Optimalizace policy|NoveltyKlíčová slova (anglicky)
Evolution strategies|Tranformers|Policy optimization|NoveltyCílem práce je prozkoumat schopnost evolučních strategií trénovat architektury trans- formerů v prostředí zpětnovazebního učení. Provedeme experimenty s využitím vysoce paralelizovatelného algoritmu OpenAI-ES a dvou jeho variant využívajících konceptů no- velty a quality-diversity prohledávání k trénování architektury Decision Transformeru v prostředí MuJoCo Humanoida a otestujeme tak schopnost těchto black-box optimalizač- ních technik trénovat i takto relativně velké (ve srovnání s dříve testovanými) a kom- plikované modely (využívajících self-attention vedle klasických plně propojených vrstev). Testované algoritmy se v našich experimentech ukázaly obecně jako schopné dosahovat silných výsledků a dokázaly vyvinout vysoce výkonné agenty - a to jak z náhodně ini- cializovaného modelu, tak z předtrénovaného modelu. 1
We explore the capability of evolution strategies to train a transformer architecture in the reinforcement learning setting. We perform experiments using OpenAI's highly parallelizable evolution strategy and its derivatives utilizing novelty and quality-diversity searches to train Decision Transformer in Humanoid locomotion environment, testing the ability of these black-box optimization techniques to train even such relatively large (com- pared to the previously tested in the literature) and complicated (using a self-attention in addition to fully connected layers) models. The tested algorithms proved to be, in gen- eral, capable of achieving strong results and managed to obtain high-performing agents both from scratch (randomly initialized model) and from a pretrained model. 1