dc.contributor.advisor | Pick, Luboš | |
dc.creator | Kubíček, David | |
dc.date.accessioned | 2024-11-29T04:48:01Z | |
dc.date.available | 2024-11-29T04:48:01Z | |
dc.date.issued | 2024 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/190511 | |
dc.description.abstract | Dokážeme ekvivalenci omezenosti jistých supremálních operátorů a optimality pros- torů v Sobolevově vnoření. Tohoto docílíme tak, že využijeme známých vztahů mezi Sobolevovými vnořeními a izoperimetrickými nerovnostmi. Nalezneme explicitní vzorce pro normu optimálního výchozího prostoru a pro normu optimálního cílového prostoru v Sobolevově vnoření. Nakonec aplikujeme naše obecné teoretické výsledky na Sobolevova vnoření vyšších řádů pro funkce definované na regulárních oblastech a na oblastech náleže- jících do Maz'yovy třídy. Výsledky jsou částečně použitelné například v kontextu prostorů se součinovou pravděpodobnostní mírou. 1 | cs_CZ |
dc.description.abstract | We establish the equivalence between the boundedness of certain supremum operators and optimal spaces in Sobolev embeddings. We do this by exploiting known relations between higher-order Sobolev embeddings and isoperimetric inequalities. We provide an explicit way to compute both the optimal domain norm and the optimal target norm in a Sobolev embedding. Finally, we apply our results to higher-order Sobolev embeddings on John domains and on domains from the Maz'ya classes. Furthermore, our results are partially applicable to embeddings involving product probability spaces. 1 | en_US |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | function spaces|integral operators|optimality|Sobolev embeddings | en_US |
dc.subject | prostory funkcí|integrální operátory|optimalita|Sobolevovo vnoření | cs_CZ |
dc.title | Fine properties of functions and operators | en_US |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2024 | |
dcterms.dateAccepted | 2024-06-07 | |
dc.description.department | Department of Mathematical Analysis | en_US |
dc.description.department | Katedra matematické analýzy | cs_CZ |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 258898 | |
dc.title.translated | Jemné vlastnosti funkcí a oprátorů | cs_CZ |
dc.contributor.referee | Slavíková, Lenka | |
thesis.degree.name | Mgr. | |
thesis.degree.level | navazující magisterské | cs_CZ |
thesis.degree.discipline | Mathematical analysis | en_US |
thesis.degree.discipline | Matematická analýza | cs_CZ |
thesis.degree.program | Mathematical Analysis | en_US |
thesis.degree.program | Matematická analýza | cs_CZ |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra matematické analýzy | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Mathematical Analysis | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Matematická analýza | cs_CZ |
uk.degree-discipline.en | Mathematical analysis | en_US |
uk.degree-program.cs | Matematická analýza | cs_CZ |
uk.degree-program.en | Mathematical Analysis | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | Dokážeme ekvivalenci omezenosti jistých supremálních operátorů a optimality pros- torů v Sobolevově vnoření. Tohoto docílíme tak, že využijeme známých vztahů mezi Sobolevovými vnořeními a izoperimetrickými nerovnostmi. Nalezneme explicitní vzorce pro normu optimálního výchozího prostoru a pro normu optimálního cílového prostoru v Sobolevově vnoření. Nakonec aplikujeme naše obecné teoretické výsledky na Sobolevova vnoření vyšších řádů pro funkce definované na regulárních oblastech a na oblastech náleže- jících do Maz'yovy třídy. Výsledky jsou částečně použitelné například v kontextu prostorů se součinovou pravděpodobnostní mírou. 1 | cs_CZ |
uk.abstract.en | We establish the equivalence between the boundedness of certain supremum operators and optimal spaces in Sobolev embeddings. We do this by exploiting known relations between higher-order Sobolev embeddings and isoperimetric inequalities. We provide an explicit way to compute both the optimal domain norm and the optimal target norm in a Sobolev embedding. Finally, we apply our results to higher-order Sobolev embeddings on John domains and on domains from the Maz'ya classes. Furthermore, our results are partially applicable to embeddings involving product probability spaces. 1 | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzy | cs_CZ |
thesis.grade.code | 1 | |
uk.publication-place | Praha | cs_CZ |
uk.thesis.defenceStatus | O | |