dc.contributor.advisor | Procházka, Vít | |
dc.creator | Komora, Ondřej | |
dc.date.accessioned | 2024-11-29T20:22:38Z | |
dc.date.available | 2024-11-29T20:22:38Z | |
dc.date.issued | 2024 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/190636 | |
dc.description.abstract | Generování scénářů je klíčovou součástí stochastické optimalizace, která má velký dopad na výpočetní náročnost optimalizačních metod a kvalitu získaných řešení. Navz- dory její důležitosti je generování scénářů pro diskrétní data relativně málo zkoumanou oblastí a když se přecejenom zkoumá, je to většinou pomocí problémově orientovaného přístupu. Avšak tyto metody jsou náročné na vývoj, což má za následek to, že neexistují jednoduše použitelné alternativy k náhodnému výběru. V této práci navrhujeme novou metodu pro generování scénářů pro diskrétní data, která je založena na kopulách. Hlavní myšlenkou je rozšíření diskrétních náhodných veličin tak, aby byly spojité, a následně použití takzvané rozšířené kopule. Na příkladové studii v podobě stochastického batohu dokazujeme za použití několika kritérií, jako například stabilita a vzdálenost od opti- málního řešení, že tato metoda přesvědčivě překonává náhodný výběr. Tato metoda je jednoduchá na použití a může sloužit jako náročnější benchmark pro problémově orien- tované metody. 1 | cs_CZ |
dc.description.abstract | Stochastic optimization relies heavily on scenario generation, which has a large impact on the tractability of optimization methods and the quality of obtained solutions. Despite its importance, scenario generation for discrete data is rarely studied and even when it is, it often involves a problem-oriented method. However, the development of these methods is resource-intensive, resulting in a situation where viable easy-to-use alternatives to sampling are missing. In this work, we attempt to remedy the situation by proposing a new copula-based scenario generation method for discrete data. The method is based on extending discrete random variables and subsequent use of the so-called extension copula. We demonstrate the effectiveness of this method on the stochastic knapsack problem by using several metrics like in-sample stability, out-of-sample evaluation gap, and optimality gap. The results show that our method outperforms sampling and can serve as a more challenging benchmark for problem-oriented methods. 1 | en_US |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | stochastic optimization|scenario generation|discrete data|copula | en_US |
dc.subject | stochasatická optimalizace|generování scénářů|diskrétní data|copula | cs_CZ |
dc.title | Scenario generation methods for discrete data | en_US |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2024 | |
dcterms.dateAccepted | 2024-06-10 | |
dc.description.department | Department of Probability and Mathematical Statistics | en_US |
dc.description.department | Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 268798 | |
dc.title.translated | Generování scénářů pro diskrétní data | cs_CZ |
dc.contributor.referee | Omelka, Marek | |
thesis.degree.name | Mgr. | |
thesis.degree.level | navazující magisterské | cs_CZ |
thesis.degree.discipline | Probability, Mathematical Statistics and Econometrics with specialisation in Econometrics | en_US |
thesis.degree.discipline | Pravděpodobnost, matematická statistika a ekonometrie se specializací Ekonometrie | cs_CZ |
thesis.degree.program | Probability, Mathematical Statistics and Econometrics | en_US |
thesis.degree.program | Pravděpodobnost, matematická statistika a ekonometrie | cs_CZ |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Probability and Mathematical Statistics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Pravděpodobnost, matematická statistika a ekonometrie se specializací Ekonometrie | cs_CZ |
uk.degree-discipline.en | Probability, Mathematical Statistics and Econometrics with specialisation in Econometrics | en_US |
uk.degree-program.cs | Pravděpodobnost, matematická statistika a ekonometrie | cs_CZ |
uk.degree-program.en | Probability, Mathematical Statistics and Econometrics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | Generování scénářů je klíčovou součástí stochastické optimalizace, která má velký dopad na výpočetní náročnost optimalizačních metod a kvalitu získaných řešení. Navz- dory její důležitosti je generování scénářů pro diskrétní data relativně málo zkoumanou oblastí a když se přecejenom zkoumá, je to většinou pomocí problémově orientovaného přístupu. Avšak tyto metody jsou náročné na vývoj, což má za následek to, že neexistují jednoduše použitelné alternativy k náhodnému výběru. V této práci navrhujeme novou metodu pro generování scénářů pro diskrétní data, která je založena na kopulách. Hlavní myšlenkou je rozšíření diskrétních náhodných veličin tak, aby byly spojité, a následně použití takzvané rozšířené kopule. Na příkladové studii v podobě stochastického batohu dokazujeme za použití několika kritérií, jako například stabilita a vzdálenost od opti- málního řešení, že tato metoda přesvědčivě překonává náhodný výběr. Tato metoda je jednoduchá na použití a může sloužit jako náročnější benchmark pro problémově orien- tované metody. 1 | cs_CZ |
uk.abstract.en | Stochastic optimization relies heavily on scenario generation, which has a large impact on the tractability of optimization methods and the quality of obtained solutions. Despite its importance, scenario generation for discrete data is rarely studied and even when it is, it often involves a problem-oriented method. However, the development of these methods is resource-intensive, resulting in a situation where viable easy-to-use alternatives to sampling are missing. In this work, we attempt to remedy the situation by proposing a new copula-based scenario generation method for discrete data. The method is based on extending discrete random variables and subsequent use of the so-called extension copula. We demonstrate the effectiveness of this method on the stochastic knapsack problem by using several metrics like in-sample stability, out-of-sample evaluation gap, and optimality gap. The results show that our method outperforms sampling and can serve as a more challenging benchmark for problem-oriented methods. 1 | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
thesis.grade.code | 1 | |
uk.publication-place | Praha | cs_CZ |
uk.thesis.defenceStatus | O | |