dc.contributor.advisor | Mihula, Zdeněk | |
dc.creator | Drážný, Ladislav | |
dc.date.accessioned | 2024-11-29T01:34:14Z | |
dc.date.available | 2024-11-29T01:34:14Z | |
dc.date.issued | 2024 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/190690 | |
dc.description.abstract | V této práci studujeme jistou váženou Sobolevovu nerovnost pro funkce z daného Sobolevova prostoru, jenž je vybudován nad prostorem s normou nezávisející na pře- rovnání. Uvažované prostory s normou nezávisející na přerovnání jsou zavedeny na pro- storu Rn s váženou mírou, jež je definována pomocí monomiální váhy. V práci dokážeme redukční princip pro danou Sobolevovu nerovnost. Redukční princip představuje metodu, jak za použití nerovností zahrnujících funkce pouze jedné proměnné charakterizovat pro- story s normou nezávisející na přerovnání, jež splňují zkoumanou Sobolevovu nerovnost. Pro pevně zvolený prostor s normou nezávisející na přerovnání dále nalezneme optimální, tedy nejmenší, prostor s normou nezávisející na přerovnání, jenž splňuje Sobolevovu ne- rovnost. Nakonec odvodíme charakterizaci těchto optimálních prostorů pro Lorentzovy- Karamatovy prostory. 1 | cs_CZ |
dc.description.abstract | In this thesis we study a weighted Sobolev-type inequality for functions from a certain Sobolev-type space that is built upon a rearrangement-invariant space. Considered rear- rangement-invariant spaces are defined on the space Rn endowed with the measure that is given by a monomial weight. We prove a so-called reduction principle for the Sobolev- type inequality. The reduction principle represents a method of how to characterize the rearrangement-invariant spaces that satisfy the Sobolev-type inequality by means of one- dimensional inequalities. Next, for a fixed domain rearrangement-invariant space, we describe the optimal, i.e. the smallest target rearrangement-invariant space such that the Sobolev-type inequality holds. Finally, we describe some concrete examples. We describe the optimal spaces for Lorentz-Karamata spaces. 1 | en_US |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | rearrangement-invariant function spaces|Sobolev embeddings|monomial weights|optimal function spaces|Lorentz-Karamata spaces | en_US |
dc.subject | prostory funkcí s normou invariantní k přerovnání|Sobolevova vnoření|monomiální váhy|optimální prostory funkcí|Lorentzovy-Karamatovy prostory | cs_CZ |
dc.title | Optimal function spaces in weighted Sobolev embeddings with monomial weight | en_US |
dc.type | rigorózní práce | cs_CZ |
dcterms.created | 2024 | |
dcterms.dateAccepted | 2024-06-27 | |
dc.description.department | Department of Mathematical Analysis | en_US |
dc.description.department | Katedra matematické analýzy | cs_CZ |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 271438 | |
dc.title.translated | Optimální prostory funkcí pro vážená Sobolevova vnoření s monomiální vahou | cs_CZ |
thesis.degree.name | RNDr. | |
thesis.degree.level | rigorózní řízení | cs_CZ |
thesis.degree.discipline | Mathematical Analysis | en_US |
thesis.degree.discipline | Matematická analýza | cs_CZ |
thesis.degree.program | Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
uk.thesis.type | rigorózní práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra matematické analýzy | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Mathematical Analysis | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Matematická analýza | cs_CZ |
uk.degree-discipline.en | Mathematical Analysis | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Uznáno | cs_CZ |
thesis.grade.en | Recognized | en_US |
uk.abstract.cs | V této práci studujeme jistou váženou Sobolevovu nerovnost pro funkce z daného Sobolevova prostoru, jenž je vybudován nad prostorem s normou nezávisející na pře- rovnání. Uvažované prostory s normou nezávisející na přerovnání jsou zavedeny na pro- storu Rn s váženou mírou, jež je definována pomocí monomiální váhy. V práci dokážeme redukční princip pro danou Sobolevovu nerovnost. Redukční princip představuje metodu, jak za použití nerovností zahrnujících funkce pouze jedné proměnné charakterizovat pro- story s normou nezávisející na přerovnání, jež splňují zkoumanou Sobolevovu nerovnost. Pro pevně zvolený prostor s normou nezávisející na přerovnání dále nalezneme optimální, tedy nejmenší, prostor s normou nezávisející na přerovnání, jenž splňuje Sobolevovu ne- rovnost. Nakonec odvodíme charakterizaci těchto optimálních prostorů pro Lorentzovy- Karamatovy prostory. 1 | cs_CZ |
uk.abstract.en | In this thesis we study a weighted Sobolev-type inequality for functions from a certain Sobolev-type space that is built upon a rearrangement-invariant space. Considered rear- rangement-invariant spaces are defined on the space Rn endowed with the measure that is given by a monomial weight. We prove a so-called reduction principle for the Sobolev- type inequality. The reduction principle represents a method of how to characterize the rearrangement-invariant spaces that satisfy the Sobolev-type inequality by means of one- dimensional inequalities. Next, for a fixed domain rearrangement-invariant space, we describe the optimal, i.e. the smallest target rearrangement-invariant space such that the Sobolev-type inequality holds. Finally, we describe some concrete examples. We describe the optimal spaces for Lorentz-Karamata spaces. 1 | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra matematické analýzy | cs_CZ |
thesis.grade.code | U | |
uk.publication-place | Praha | cs_CZ |
uk.thesis.defenceStatus | U | |