dc.contributor.advisor | Šťovíček, Jan | |
dc.creator | Krasula, Dominik | |
dc.date.accessioned | 2024-11-28T14:29:01Z | |
dc.date.available | 2024-11-28T14:29:01Z | |
dc.date.issued | 2024 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/190730 | |
dc.description.abstract | Gabriel-Roiterova míra je invariant na modulech, definovaný v roce 1973 P. Gabrielem. Je to uspořádání-zachovávajicí funkce, která zjemňuje kompoziční délku modulu tím, že bere v potaz též délky nerozložitelných podmodulů. Spočí- táme všechny Gabriel-Roiterovi míry pro reprezentace konečné délky pro konkrét- ní orientaci Dynkinova grafu D4 a Euklidovského grafu Ã3. V roce 2007 H. Krause navrhl kombinatorickou definici Gabriel-Roiterovi míry založenou na jiných funkcích než kompoziční délce. Tyto alternativní Gabriel- Roiterovi míry studujeme na tenkých reprezentacích toulců, které neobsahují neorientované cesty. 1 | cs_CZ |
dc.description.abstract | The Gabriel-Roiter measure is a module-theoretic invariant, defined in 1972 by P. Gabriel. It is an order-preserving function that refines a composition length of a module by also taking lengths of indecomposable submodules into account. We calculate all Gabriel-Roiter measures for finite-length representa- tions of an orientation of a Dynkin graph D4 and an orientation of a Euclidean graph Ã3. In 2007, H. Krause proposed a combinatorial definition of the Gabriel-Roiter measure based on other length functions instead of composition length. We study these alternative Gabriel-Roiter measures on thin representations of quiv- ers whose underlying graph is a tree. 1 | en_US |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | Gabriel-Roiterova míra|reprezentace toulců|tenké reprezentace | en_US |
dc.subject | Gabriel-Roiter measure|representations of quivers|thin representations | cs_CZ |
dc.title | The Gabriel-Roiter measure in representation theory | en_US |
dc.type | rigorózní práce | cs_CZ |
dcterms.created | 2024 | |
dcterms.dateAccepted | 2024-06-27 | |
dc.description.department | Department of Algebra | en_US |
dc.description.department | Katedra algebry | cs_CZ |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 270946 | |
dc.title.translated | Gabrielova-Roiterova míra v teorii reprezentací | cs_CZ |
thesis.degree.name | RNDr. | |
thesis.degree.level | rigorózní řízení | cs_CZ |
thesis.degree.discipline | Mathematical Structures | en_US |
thesis.degree.discipline | Matematické struktury | cs_CZ |
thesis.degree.program | Mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
uk.thesis.type | rigorózní práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra algebry | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Algebra | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Matematické struktury | cs_CZ |
uk.degree-discipline.en | Mathematical Structures | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Uznáno | cs_CZ |
thesis.grade.en | Recognized | en_US |
uk.abstract.cs | Gabriel-Roiterova míra je invariant na modulech, definovaný v roce 1973 P. Gabrielem. Je to uspořádání-zachovávajicí funkce, která zjemňuje kompoziční délku modulu tím, že bere v potaz též délky nerozložitelných podmodulů. Spočí- táme všechny Gabriel-Roiterovi míry pro reprezentace konečné délky pro konkrét- ní orientaci Dynkinova grafu D4 a Euklidovského grafu Ã3. V roce 2007 H. Krause navrhl kombinatorickou definici Gabriel-Roiterovi míry založenou na jiných funkcích než kompoziční délce. Tyto alternativní Gabriel- Roiterovi míry studujeme na tenkých reprezentacích toulců, které neobsahují neorientované cesty. 1 | cs_CZ |
uk.abstract.en | The Gabriel-Roiter measure is a module-theoretic invariant, defined in 1972 by P. Gabriel. It is an order-preserving function that refines a composition length of a module by also taking lengths of indecomposable submodules into account. We calculate all Gabriel-Roiter measures for finite-length representa- tions of an orientation of a Dynkin graph D4 and an orientation of a Euclidean graph Ã3. In 2007, H. Krause proposed a combinatorial definition of the Gabriel-Roiter measure based on other length functions instead of composition length. We study these alternative Gabriel-Roiter measures on thin representations of quiv- ers whose underlying graph is a tree. 1 | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra algebry | cs_CZ |
thesis.grade.code | U | |
uk.publication-place | Praha | cs_CZ |
uk.thesis.defenceStatus | U | |