Geometry of multidimensional continued fractions
Geometrie vícerozměrných řetězových zlomků
diplomová práce (OBHÁJENO)

Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/190900Identifikátory
SIS: 269491
Kolekce
- Kvalifikační práce [11326]
Autor
Vedoucí práce
Oponent práce
Yatsyna, Pavlo
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Matematické struktury
Katedra / ústav / klinika
Katedra algebry
Datum obhajoby
13. 6. 2024
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Výborně
Klíčová slova (česky)
geometrické řetězové zlomky|celočíselná geometrie|totálně reálná číselná tělesaKlíčová slova (anglicky)
continued fractions|integer geometry|totally real number fieldsCílem práce je zabývat se geometrií vícerozměrných řetězových zlomků. Speciální po- zornost je věnována případu, kdy jsou tyto zlomky periodické. V práci zavedeme teorii pro celočíselnou geometrii s obecnými mřížkami a s použitím této teorie definujeme periodické řetězové zlomky pro obecné nadroviny a obecné mřížky. Speciální pozornost je kladena dvěma konkrétním konstrukcím periodických řetězových zlomků, první se zakládá na ma- ticích z SL(n, Z) a druhá vychází z řádů v číselných tělesech. Tyto konstrukce zobecníme a najdeme bijekci mezi jejich zobecněnými variantami. 1
The goal of this thesis is to study the geometric generalization of continued fractions, especially in the case when these continued fractions are periodic. We develop a multidi- mensional integer geometry theory for general lattices, and using this theory, we define periodic continued fractions for general lattices and simplicial cones. We are in particu- lar interested in two different constructions of periodic continued fractions, one coming from SL(n, Z) matrices, and another from orders in totally real number fields of degree n. We generalize these constructions and prove that there is a one-to-one correspondence between the generalized constructions. 1