dc.contributor.advisor | Šťovíček, Jan | |
dc.creator | Mišinová, Magdaléna | |
dc.date.accessioned | 2024-11-29T07:01:57Z | |
dc.date.available | 2024-11-29T07:01:57Z | |
dc.date.issued | 2024 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/191340 | |
dc.description.abstract | Vezmeme si konkrétní akci multiplikativní grupy komplexních čísel na součinu projek- tivních přímek a budeme zkoumat strukturu jejích orbit. Ukazuje se, že Chowův kvocient této akce je izomorfní permutohedrální varietě. Toto nedokážeme v plné šíři, ale najdeme množinovou bijekci a popíšeme izomorfismus pro součin dvou přímek. V úvodu shrneme potřebné definice a věty jak z torické geometrie, tak z teorie týkající se Grassmannianů a Chowových variet. | cs_CZ |
dc.description.abstract | We fix a specific action of the multiplicative group of complex numbers on a product of projective lines and examine the structure of its orbits. It turns out that the Chow quotient is isomorphic to permutohedral variety. We do not show this in the full extent, but we find a set-theoretical bijection and describe the isomorphism for a product of two lines. In the introduction, we sum up the necessary definitions and theorems from both toric geometry and the theory of Grassmannians and Chow varieties. | en_US |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | Chow quotient|Chow varieties|permutohedral variety|toric geometry | en_US |
dc.subject | Chowův kvocinet|Chowovy variety|permutohedrální varieta|torická geometrie | cs_CZ |
dc.title | Permutohedral varieties as Chow quotients | en_US |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2024 | |
dcterms.dateAccepted | 2024-06-19 | |
dc.description.department | Department of Algebra | en_US |
dc.description.department | Katedra algebry | cs_CZ |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 270162 | |
dc.title.translated | Permutohedrální variety jakožto Chowovy kvocienty | cs_CZ |
dc.contributor.referee | Monin, Leonid | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | General Mathematics | en_US |
thesis.degree.discipline | Obecná matematika | cs_CZ |
thesis.degree.program | General Mathematics | en_US |
thesis.degree.program | Obecná matematika | cs_CZ |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra algebry | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Algebra | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Obecná matematika | cs_CZ |
uk.degree-discipline.en | General Mathematics | en_US |
uk.degree-program.cs | Obecná matematika | cs_CZ |
uk.degree-program.en | General Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | Vezmeme si konkrétní akci multiplikativní grupy komplexních čísel na součinu projek- tivních přímek a budeme zkoumat strukturu jejích orbit. Ukazuje se, že Chowův kvocient této akce je izomorfní permutohedrální varietě. Toto nedokážeme v plné šíři, ale najdeme množinovou bijekci a popíšeme izomorfismus pro součin dvou přímek. V úvodu shrneme potřebné definice a věty jak z torické geometrie, tak z teorie týkající se Grassmannianů a Chowových variet. | cs_CZ |
uk.abstract.en | We fix a specific action of the multiplicative group of complex numbers on a product of projective lines and examine the structure of its orbits. It turns out that the Chow quotient is isomorphic to permutohedral variety. We do not show this in the full extent, but we find a set-theoretical bijection and describe the isomorphism for a product of two lines. In the introduction, we sum up the necessary definitions and theorems from both toric geometry and the theory of Grassmannians and Chow varieties. | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra algebry | cs_CZ |
thesis.grade.code | 1 | |
dc.contributor.consultant | Michalek, Mateusz | |
uk.publication-place | Praha | cs_CZ |
uk.thesis.defenceStatus | O | |