Zobrazit minimální záznam

Distribution models for jewelleries
Distribuční modely šperků
dc.contributor.advisorKopa, Miloš
dc.creatorMinárik, Martin
dc.date.accessioned2024-11-29T12:00:07Z
dc.date.available2024-11-29T12:00:07Z
dc.date.issued2024
dc.identifier.urihttp://hdl.handle.net/20.500.11956/191966
dc.description.abstractTáto práca rieši problém distribúcie šperkov pomocou teórie celočiselného programovania. V teoretickej časti sú definované základné pojmy a predstavená základná teoria celočísleného programovania. Teoretická časť sa taktiež zaoberá detailným popisom Algoritmu vetvenia a medzí (Branch and bound algorithm). Praktická časť rieši reálny problém z praxe. Cielom tejto časti je optimálne roz- deliť šperky vybranej značky na butiky danej značky. Je v nej predstavená tvorba modelu celočísleného programovania riešiaceho danú problematiku pomocou via- cerých kritérií. Následne sa praktická časť venuje popisu vstupných dát a rozboru výsledkov distribúcie vstupných dát pomocou navrnutého modelu pre 3 kombi- nácie vstupných parametrov, ktoré jemne pozmenia navrhnutý model. 1cs_CZ
dc.description.abstractThis work solves jewelry distribution problem using the theory of integer prog- ramming. In theoretical part we present basic definitions and fundamental theory of integer programming. Theoretical part also presents detailed description of the Branch and bound algorithm. Practical part tackles a real world problem. The goal of the practical part is to optimaly distribute jewelry of the chosen brand to their butiques. Firstly, we present the creation of the integer programming model that solves this problem considering multiple criteria. Secondly, in practical part we present the description of the input data and also the analisis of the result of distribution of the input data using proposed model for 3 diferent combinations of input parameters. 1en_US
dc.languageSlovenčinacs_CZ
dc.language.isosk_SK
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectdistribution models|optimization|integer programmingen_US
dc.subjectdistribuční model|optimalizace|celočíselné programovánícs_CZ
dc.titleDistribučné modely šperkovsk_SK
dc.typebakalářská prácecs_CZ
dcterms.created2024
dcterms.dateAccepted2024-06-26
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId267214
dc.title.translatedDistribution models for jewelleriesen_US
dc.title.translatedDistribuční modely šperkůcs_CZ
dc.contributor.refereeBranda, Martin
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineFinancial Mathematicsen_US
thesis.degree.disciplineFinanční matematikacs_CZ
thesis.degree.programFinancial Mathematicsen_US
thesis.degree.programFinanční matematikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csFinanční matematikacs_CZ
uk.degree-discipline.enFinancial Mathematicsen_US
uk.degree-program.csFinanční matematikacs_CZ
uk.degree-program.enFinancial Mathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csTáto práca rieši problém distribúcie šperkov pomocou teórie celočiselného programovania. V teoretickej časti sú definované základné pojmy a predstavená základná teoria celočísleného programovania. Teoretická časť sa taktiež zaoberá detailným popisom Algoritmu vetvenia a medzí (Branch and bound algorithm). Praktická časť rieši reálny problém z praxe. Cielom tejto časti je optimálne roz- deliť šperky vybranej značky na butiky danej značky. Je v nej predstavená tvorba modelu celočísleného programovania riešiaceho danú problematiku pomocou via- cerých kritérií. Následne sa praktická časť venuje popisu vstupných dát a rozboru výsledkov distribúcie vstupných dát pomocou navrnutého modelu pre 3 kombi- nácie vstupných parametrov, ktoré jemne pozmenia navrhnutý model. 1cs_CZ
uk.abstract.enThis work solves jewelry distribution problem using the theory of integer prog- ramming. In theoretical part we present basic definitions and fundamental theory of integer programming. Theoretical part also presents detailed description of the Branch and bound algorithm. Practical part tackles a real world problem. The goal of the practical part is to optimaly distribute jewelry of the chosen brand to their butiques. Firstly, we present the creation of the integer programming model that solves this problem considering multiple criteria. Secondly, in practical part we present the description of the input data and also the analisis of the result of distribution of the input data using proposed model for 3 diferent combinations of input parameters. 1en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV