Zobrazit minimální záznam

Text authorship classification with unknown authors
dc.contributor.advisorHajič, Jan
dc.creatorDolník, Karel
dc.date.accessioned2024-11-29T14:03:04Z
dc.date.available2024-11-29T14:03:04Z
dc.date.issued2024
dc.identifier.urihttp://hdl.handle.net/20.500.11956/192068
dc.description.abstractPřiřazení autorství pomocí statistických a výpočetních metod je hojně zkoumaným tématem literární vědy, ovšem jen málo prací se zabývá řešením problému, kdy klasifikovaný text nenapsal nikdo z autorů, které model viděl při trénování. Tato práce hledá způsob, jak takového neznámého autora detekovat v rámci stejných metod strojového učení, které se pro přiřazení autorství běžně používají, zejména klasifikátoru SVM. Zavádíme zde upravené klasifikační schéma One-versus-Rest-and-None které rozšiřuje schéma One-versus-Rest o trénování pomocí dat, která nepatří žádnému klasifikovanému autorovi. K tomu lze využít synteticky vytvořená data, nebo data od autorů, u kterých je jisté, že s klasifikovanými texty nejsou nijak spojeni. Ukázalo se, že právě při použití syntetických dat dojde k nejmenšímu snížení přesnosti oproti klasifikaci bez detekce neznámého autora.cs_CZ
dc.description.abstractStatistical and computational authorship attribution is a widely researched topic in literary science, but few works deal with solving the problem when the classified text does not belong to any of the authors the model saw during training. This work seeks a way to detect such an unknown author using machine learning methods commonly used for authorship attribution, especially the SVM classifier. He we introduce a modified One-versus-Rest-and-None classification scheme, which extends the One-versus-Rest scheme by training with data that does not belong to any classified author. This can be done using synthetically produced data or data from authors who are certain to have no connection to the classified texts. It turned out that the smallest decrease in accuracy occurred when synthetic data is used, compared to the classification without detection of an unknown author.en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectauthorship classification|machine learning|computational literary science|stylometryen_US
dc.subjectklasifikace autorství|strojové učení|výpočetní literární věda|stylometriecs_CZ
dc.titleKlasifikace autorství textu s neznámým autoremcs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2024
dcterms.dateAccepted2024-06-28
dc.description.departmentInstitute of Formal and Applied Linguisticsen_US
dc.description.departmentÚstav formální a aplikované lingvistikycs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId269513
dc.title.translatedText authorship classification with unknown authorsen_US
dc.contributor.refereeMírovský, Jiří
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplineComputer Science with specialisation in Artificial Intelligenceen_US
thesis.degree.disciplineInformatika se specializací Umělá inteligencecs_CZ
thesis.degree.programComputer Scienceen_US
thesis.degree.programInformatikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Ústav formální a aplikované lingvistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Institute of Formal and Applied Linguisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csInformatika se specializací Umělá inteligencecs_CZ
uk.degree-discipline.enComputer Science with specialisation in Artificial Intelligenceen_US
uk.degree-program.csInformatikacs_CZ
uk.degree-program.enComputer Scienceen_US
thesis.grade.csVelmi dobřecs_CZ
thesis.grade.enVery gooden_US
uk.abstract.csPřiřazení autorství pomocí statistických a výpočetních metod je hojně zkoumaným tématem literární vědy, ovšem jen málo prací se zabývá řešením problému, kdy klasifikovaný text nenapsal nikdo z autorů, které model viděl při trénování. Tato práce hledá způsob, jak takového neznámého autora detekovat v rámci stejných metod strojového učení, které se pro přiřazení autorství běžně používají, zejména klasifikátoru SVM. Zavádíme zde upravené klasifikační schéma One-versus-Rest-and-None které rozšiřuje schéma One-versus-Rest o trénování pomocí dat, která nepatří žádnému klasifikovanému autorovi. K tomu lze využít synteticky vytvořená data, nebo data od autorů, u kterých je jisté, že s klasifikovanými texty nejsou nijak spojeni. Ukázalo se, že právě při použití syntetických dat dojde k nejmenšímu snížení přesnosti oproti klasifikaci bez detekce neznámého autora.cs_CZ
uk.abstract.enStatistical and computational authorship attribution is a widely researched topic in literary science, but few works deal with solving the problem when the classified text does not belong to any of the authors the model saw during training. This work seeks a way to detect such an unknown author using machine learning methods commonly used for authorship attribution, especially the SVM classifier. He we introduce a modified One-versus-Rest-and-None classification scheme, which extends the One-versus-Rest scheme by training with data that does not belong to any classified author. This can be done using synthetically produced data or data from authors who are certain to have no connection to the classified texts. It turned out that the smallest decrease in accuracy occurred when synthetic data is used, compared to the classification without detection of an unknown author.en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Ústav formální a aplikované lingvistikycs_CZ
thesis.grade.code2
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV