dc.contributor.advisor | Libovický, Jindřich | |
dc.creator | Provazník, Jan | |
dc.date.accessioned | 2024-11-29T06:11:04Z | |
dc.date.available | 2024-11-29T06:11:04Z | |
dc.date.issued | 2024 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/192072 | |
dc.description.abstract | Architektura Transformer je velmi popula ́rnı ́, takz ̌e mu ̊z ̌e by ́t potencia ́lne ̌ vy ́znamne ́ interpretovat, co ovlivn ̌uje jejı ́ vy ́kon. Testujeme hypote ́zu, z ̌e mo- del se pr ̌i pra ́ci s textem spole ́ha ́ na jeho lingvisticke ́ vlastnosti. Abychom eli- minovali vliv kultury na vy ́znam, pouz ̌ı ́va ́me u ́lohu pracujı ́cı ́ na u ́rovni znaku ̊ s Transformer modelem ByT5. Dotre ́nujeme ByT5-small na des ̌ifrova ́nı ́ ve ̌t zas ̌ifrovany ́ch pomocı ́ textovy ́ch s ̌ifer (Vigene ̀re, Enigma). Anotujeme eva- luac ̌nı ́ dataset ve ̌t pomocı ́ publikovany ́ch na 'stroju ̊ pro NLP. Na evaluac ̌nı ́m datasetu zkouma ́me vztahy mezi lingvisticky ́mi vlastnostmi a c ̌etnostı ́ chyb dotre ́novane ́ho ByT5 pr ̌i des ̌ifrova ́nı ́ ve ̌t. Analyzujeme korelace, tre ́nujeme ML modely na predikci c ̌etnosti chyb ve ̌ty z jijı ́ch lingvisticky ́ch vlastnostı ́ a interpretujeme du ̊lez ̌itost vlastnostı ́ pomocı ́ SHAP. Nacha ́zı ́me male ́ signifi- kantnı ́ korelace, ale predikce c ̌etnosti chyb z vlastnostı ́ selha ́va ́. Dospı ́va ́me k za ́ve ̌ru, z ̌e identifikovane ́ vlastnosti neposkytujı ́ vhled do vy ́konu Transfor- meru ̊. | cs_CZ |
dc.description.abstract | The Transformer architecture is very popular, so it is potentially im- pactful to interpret what influences its performance. We test the hypothesis that the model relies on the linguistic properties of a text when working with it. We remove interference with cultural aspects of meaning by using a character-level task with the ByT5 Transformer model. We train ByT5 to decipher sentences encrypted with text ciphers (Vigenère, Enigma). We annotate a sentence dataset with linguistic properties with published NLP tools. On this dataset, we study the relationships between the linguistic properties and the fine-tuned ByT5 decipherment error rate. We analyze correlations, train ML models to predict error rates from the properties and interpret them with SHAP. We find small significant correlations but can- not predict error rates from the properties. We conclude the properties we identified do not give much insight into the performance of the Transformer. | en_US |
dc.language | English | cs_CZ |
dc.language.iso | en_US | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | Transformer|interpretability|NLP|deep learning|ciphers | en_US |
dc.subject | Transformer|interpretovatelnost|NLP|deep learning|šifry | cs_CZ |
dc.title | Textual Ciphers as a Tool for Better Understanding the Transformers | en_US |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2024 | |
dcterms.dateAccepted | 2024-06-28 | |
dc.description.department | Institute of Formal and Applied Linguistics | en_US |
dc.description.department | Ústav formální a aplikované lingvistiky | cs_CZ |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 262108 | |
dc.title.translated | Textové šifry jako nástroj pro lepší pochopení modelů Transformer | cs_CZ |
dc.contributor.referee | Kasner, Zdeněk | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | Computer Science with specialisation in Artificial Intelligence | en_US |
thesis.degree.discipline | Informatika se specializací Umělá inteligence | cs_CZ |
thesis.degree.program | Computer Science | en_US |
thesis.degree.program | Informatika | cs_CZ |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Ústav formální a aplikované lingvistiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Institute of Formal and Applied Linguistics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Informatika se specializací Umělá inteligence | cs_CZ |
uk.degree-discipline.en | Computer Science with specialisation in Artificial Intelligence | en_US |
uk.degree-program.cs | Informatika | cs_CZ |
uk.degree-program.en | Computer Science | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | Architektura Transformer je velmi popula ́rnı ́, takz ̌e mu ̊z ̌e by ́t potencia ́lne ̌ vy ́znamne ́ interpretovat, co ovlivn ̌uje jejı ́ vy ́kon. Testujeme hypote ́zu, z ̌e mo- del se pr ̌i pra ́ci s textem spole ́ha ́ na jeho lingvisticke ́ vlastnosti. Abychom eli- minovali vliv kultury na vy ́znam, pouz ̌ı ́va ́me u ́lohu pracujı ́cı ́ na u ́rovni znaku ̊ s Transformer modelem ByT5. Dotre ́nujeme ByT5-small na des ̌ifrova ́nı ́ ve ̌t zas ̌ifrovany ́ch pomocı ́ textovy ́ch s ̌ifer (Vigene ̀re, Enigma). Anotujeme eva- luac ̌nı ́ dataset ve ̌t pomocı ́ publikovany ́ch na 'stroju ̊ pro NLP. Na evaluac ̌nı ́m datasetu zkouma ́me vztahy mezi lingvisticky ́mi vlastnostmi a c ̌etnostı ́ chyb dotre ́novane ́ho ByT5 pr ̌i des ̌ifrova ́nı ́ ve ̌t. Analyzujeme korelace, tre ́nujeme ML modely na predikci c ̌etnosti chyb ve ̌ty z jijı ́ch lingvisticky ́ch vlastnostı ́ a interpretujeme du ̊lez ̌itost vlastnostı ́ pomocı ́ SHAP. Nacha ́zı ́me male ́ signifi- kantnı ́ korelace, ale predikce c ̌etnosti chyb z vlastnostı ́ selha ́va ́. Dospı ́va ́me k za ́ve ̌ru, z ̌e identifikovane ́ vlastnosti neposkytujı ́ vhled do vy ́konu Transfor- meru ̊. | cs_CZ |
uk.abstract.en | The Transformer architecture is very popular, so it is potentially im- pactful to interpret what influences its performance. We test the hypothesis that the model relies on the linguistic properties of a text when working with it. We remove interference with cultural aspects of meaning by using a character-level task with the ByT5 Transformer model. We train ByT5 to decipher sentences encrypted with text ciphers (Vigenère, Enigma). We annotate a sentence dataset with linguistic properties with published NLP tools. On this dataset, we study the relationships between the linguistic properties and the fine-tuned ByT5 decipherment error rate. We analyze correlations, train ML models to predict error rates from the properties and interpret them with SHAP. We find small significant correlations but can- not predict error rates from the properties. We conclude the properties we identified do not give much insight into the performance of the Transformer. | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Ústav formální a aplikované lingvistiky | cs_CZ |
thesis.grade.code | 1 | |
uk.publication-place | Praha | cs_CZ |
uk.thesis.defenceStatus | O | |