Image Popularity Prediction
Předpovídání popularity obrázků
diplomová práce (OBHÁJENO)
Zobrazit/ otevřít
Trvalý odkaz
http://hdl.handle.net/20.500.11956/192561Identifikátory
SIS: 247872
Kolekce
- Kvalifikační práce [11242]
Autor
Vedoucí práce
Oponent práce
Hajič, Jan
Fakulta / součást
Matematicko-fyzikální fakulta
Obor
Umělá inteligence
Katedra / ústav / klinika
Katedra teoretické informatiky a matematické logiky
Datum obhajoby
5. 9. 2023
Nakladatel
Univerzita Karlova, Matematicko-fyzikální fakultaJazyk
Angličtina
Známka
Výborně
Klíčová slova (česky)
{Deep Learning}|{Convolutional Neural Networks}|{Language models}|{Sentiment Analysis}Klíčová slova (anglicky)
{Deep Learning}|{Convolutional Neural Networks}|{Language models}|{Sentiment Analysis}In this thesis, we compare deep learning models for the purpose of predicting the popularity of social media posts. We curated a comprehensive dataset from a renowned social media platform, encompassing a rich variety of features in- cluding images, text captions, and social attributes. Each model's performance was evaluated based on Mean Squared Error, Mean Absolute Error, and Spear- man's rank correlation coefficient. Our model, integrating convolutional neural networks for visual inputs, transformer-based models for text, and layers for social inputs, achieved a higher composite score across all evaluation metrics in contrast to the baseline model. Enhancements such as the addition of a caption network, sentiment analysis, and the removal of scaling further boosted the per- formance. This study illuminates the potential of deep learning in improving the precision of popularity prediction for social media posts. 1