dc.contributor.advisor | Omelka, Marek | |
dc.creator | Hatalová, Terézia | |
dc.date.accessioned | 2024-11-29T14:06:10Z | |
dc.date.available | 2024-11-29T14:06:10Z | |
dc.date.issued | 2024 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/192768 | |
dc.description.abstract | V tejto bakalárskej práci zavedieme a vysvetlíme koncept PAC-učenia, ktoré sa za- oberá problematikou výberu optimálneho klasifikátora na základe realizácie náhodného výberu. Na začiatku odvodíme a dokážeme tvrdenia, ktoré nám zaručujú PAC-učenlivosť. Hlavnou časťou práce je riešenie príkladov, v ktorých ukazujeme, ako postupovať v prípa- doch, kedy sa môžeme opierať o dokázané tvrdenia a naopak v prípadoch, kedy potrebu- jeme využiť iný argument. Ukážeme PAC-učenlivosť obdĺžnikov a koncentrických kruhov v R2 , a potom sa zameriame aj na všeobecnejšie príklady. 1 | cs_CZ |
dc.description.abstract | In this bachelor's thesis, the PAC-learning model is introduced and explained. PAC- learning addresses the problem of choosing an optimal hypothesis based on random sample data realizations. Initially, statements that guarantee PAC-learnability are derived and proven. The main part of the thesis is dedicated to solving exercises, demonstrating how to proceed in cases where proven statements can be relied upon and, conversely, in cases where different arguments are necessary. PAC-learnability of rectangles and concentric circles in R2 is shown, followed by exercises where more general approach is utilized. 1 | en_US |
dc.language | Slovenčina | cs_CZ |
dc.language.iso | sk_SK | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.subject | concept|generalization error|hypothesis|machine learning|PAC-learning | en_US |
dc.subject | klasifikátor|koncept|PAC-učenie|pravdepodobnosť chybnej klasifikácie|strojové učenie | cs_CZ |
dc.title | PAC učenie | sk_SK |
dc.type | bakalářská práce | cs_CZ |
dcterms.created | 2024 | |
dcterms.dateAccepted | 2024-09-03 | |
dc.description.department | Department of Probability and Mathematical Statistics | en_US |
dc.description.department | Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.identifier.repId | 262961 | |
dc.title.translated | PAC learning | en_US |
dc.title.translated | PAC učení | cs_CZ |
dc.contributor.referee | Mizera, Ivan | |
thesis.degree.name | Bc. | |
thesis.degree.level | bakalářské | cs_CZ |
thesis.degree.discipline | General Mathematics | en_US |
thesis.degree.discipline | Obecná matematika | cs_CZ |
thesis.degree.program | General Mathematics | en_US |
thesis.degree.program | Obecná matematika | cs_CZ |
uk.thesis.type | bakalářská práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Probability and Mathematical Statistics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Obecná matematika | cs_CZ |
uk.degree-discipline.en | General Mathematics | en_US |
uk.degree-program.cs | Obecná matematika | cs_CZ |
uk.degree-program.en | General Mathematics | en_US |
thesis.grade.cs | Velmi dobře | cs_CZ |
thesis.grade.en | Very good | en_US |
uk.abstract.cs | V tejto bakalárskej práci zavedieme a vysvetlíme koncept PAC-učenia, ktoré sa za- oberá problematikou výberu optimálneho klasifikátora na základe realizácie náhodného výberu. Na začiatku odvodíme a dokážeme tvrdenia, ktoré nám zaručujú PAC-učenlivosť. Hlavnou časťou práce je riešenie príkladov, v ktorých ukazujeme, ako postupovať v prípa- doch, kedy sa môžeme opierať o dokázané tvrdenia a naopak v prípadoch, kedy potrebu- jeme využiť iný argument. Ukážeme PAC-učenlivosť obdĺžnikov a koncentrických kruhov v R2 , a potom sa zameriame aj na všeobecnejšie príklady. 1 | cs_CZ |
uk.abstract.en | In this bachelor's thesis, the PAC-learning model is introduced and explained. PAC- learning addresses the problem of choosing an optimal hypothesis based on random sample data realizations. Initially, statements that guarantee PAC-learnability are derived and proven. The main part of the thesis is dedicated to solving exercises, demonstrating how to proceed in cases where proven statements can be relied upon and, conversely, in cases where different arguments are necessary. PAC-learnability of rectangles and concentric circles in R2 is shown, followed by exercises where more general approach is utilized. 1 | en_US |
uk.file-availability | V | |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
thesis.grade.code | 2 | |
uk.publication-place | Praha | cs_CZ |
uk.thesis.defenceStatus | O | |