Zobrazit minimální záznam

Motions of protoplanets in an evolving gaseous disk
dc.contributor.advisorBrož, Miroslav
dc.creatorHořák, Jaroslav
dc.date.accessioned2024-11-28T22:19:53Z
dc.date.available2024-11-28T22:19:53Z
dc.date.issued2024
dc.identifier.urihttp://hdl.handle.net/20.500.11956/193808
dc.description.abstractTitle: Motions of protoplanets in an evolving gaseous disk Author: Jaroslav Hořák Institute: Astronomical Institute Supervisor: doc. Mgr. Miroslav Brož, Ph.D., Astronomical Institute Abstract: Planets form from protoplanets orbiting young stars, when gaseous disk still exists. This gas gravitationally interacts with protoplanets, alongside mutual perturbations between protoplanets. This phenomenon is known as planetary migration. Our aim is to investigate the role of planetary migration, specifically, in the context of the terrestrial planets (Mercury, Venus, Earth, Mars). This has been studied previously with a stationary prescription for migration and without simulating the evolution of the disk (Brož et al. 2021). Instead, in this work we use formulae for migration torque based on actual profiles of the evolving disk. We used an N-body symplectic integrator to describe motions of protoplanets (Duncan et al. 1998). Evolution of the gas disk was modeled by 1-D hydrodynamics, considering turbulent viscosity and magnetically-driven disk wind (Suzuki et al. 2016). Migration torques were computed according to Paardekooper et al. (2011), from actual profiles of the disk. Moreover, our model included close encounters, collisions of protoplanets (merging), mutual resonances, eccentricity and inclination...cs_CZ
dc.description.abstractTitle: Motions of protoplanets in an evolving gaseous disk Author: Jaroslav Hořák Institute: Astronomical Institute Supervisor: doc. Mgr. Miroslav Brož, Ph.D., Astronomical Institute Abstract: Planets form from protoplanets orbiting young stars, when gaseous disk still exists. This gas gravitationally interacts with protoplanets, alongside mutual perturbations between protoplanets. This phenomenon is known as planetary migration. Our aim is to investigate the role of planetary migration, specifically, in the context of the terrestrial planets (Mercury, Venus, Earth, Mars). This has been studied previously with a stationary prescription for migration and without simulating the evolution of the disk (Brož et al. 2021). Instead, in this work we use formulae for migration torque based on actual profiles of the evolving disk. We used an N-body symplectic integrator to describe motions of protoplanets (Duncan et al. 1998). Evolution of the gas disk was modeled by 1-D hydrodynamics, considering turbulent viscosity and magnetically-driven disk wind (Suzuki et al. 2016). Migration torques were computed according to Paardekooper et al. (2011), from actual profiles of the disk. Moreover, our model included close encounters, collisions of protoplanets (merging), mutual resonances, eccentricity and inclination...en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.subjectprotoplanetary disk|Solar Systemen_US
dc.subjectprotoplanetární disk|sluneční soustavacs_CZ
dc.titlePohyby protoplanet ve vyvíjejícím se plynném diskucs_CZ
dc.typebakalářská prácecs_CZ
dcterms.created2024
dcterms.dateAccepted2024-09-11
dc.description.departmentAstronomical Institute of Charles Universityen_US
dc.description.departmentAstronomický ústav UKcs_CZ
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.identifier.repId256460
dc.title.translatedMotions of protoplanets in an evolving gaseous disken_US
dc.contributor.refereeVokrouhlický, David
thesis.degree.nameBc.
thesis.degree.levelbakalářskécs_CZ
thesis.degree.disciplinePhysicsen_US
thesis.degree.disciplineFyzikacs_CZ
thesis.degree.programPhysicsen_US
thesis.degree.programFyzikacs_CZ
uk.thesis.typebakalářská prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Astronomický ústav UKcs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Astronomical Institute of Charles Universityen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csFyzikacs_CZ
uk.degree-discipline.enPhysicsen_US
uk.degree-program.csFyzikacs_CZ
uk.degree-program.enPhysicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csTitle: Motions of protoplanets in an evolving gaseous disk Author: Jaroslav Hořák Institute: Astronomical Institute Supervisor: doc. Mgr. Miroslav Brož, Ph.D., Astronomical Institute Abstract: Planets form from protoplanets orbiting young stars, when gaseous disk still exists. This gas gravitationally interacts with protoplanets, alongside mutual perturbations between protoplanets. This phenomenon is known as planetary migration. Our aim is to investigate the role of planetary migration, specifically, in the context of the terrestrial planets (Mercury, Venus, Earth, Mars). This has been studied previously with a stationary prescription for migration and without simulating the evolution of the disk (Brož et al. 2021). Instead, in this work we use formulae for migration torque based on actual profiles of the evolving disk. We used an N-body symplectic integrator to describe motions of protoplanets (Duncan et al. 1998). Evolution of the gas disk was modeled by 1-D hydrodynamics, considering turbulent viscosity and magnetically-driven disk wind (Suzuki et al. 2016). Migration torques were computed according to Paardekooper et al. (2011), from actual profiles of the disk. Moreover, our model included close encounters, collisions of protoplanets (merging), mutual resonances, eccentricity and inclination...cs_CZ
uk.abstract.enTitle: Motions of protoplanets in an evolving gaseous disk Author: Jaroslav Hořák Institute: Astronomical Institute Supervisor: doc. Mgr. Miroslav Brož, Ph.D., Astronomical Institute Abstract: Planets form from protoplanets orbiting young stars, when gaseous disk still exists. This gas gravitationally interacts with protoplanets, alongside mutual perturbations between protoplanets. This phenomenon is known as planetary migration. Our aim is to investigate the role of planetary migration, specifically, in the context of the terrestrial planets (Mercury, Venus, Earth, Mars). This has been studied previously with a stationary prescription for migration and without simulating the evolution of the disk (Brož et al. 2021). Instead, in this work we use formulae for migration torque based on actual profiles of the evolving disk. We used an N-body symplectic integrator to describe motions of protoplanets (Duncan et al. 1998). Evolution of the gas disk was modeled by 1-D hydrodynamics, considering turbulent viscosity and magnetically-driven disk wind (Suzuki et al. 2016). Migration torques were computed according to Paardekooper et al. (2011), from actual profiles of the disk. Moreover, our model included close encounters, collisions of protoplanets (merging), mutual resonances, eccentricity and inclination...en_US
uk.file-availabilityV
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Astronomický ústav UKcs_CZ
thesis.grade.code1
uk.publication-placePrahacs_CZ
uk.thesis.defenceStatusO


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV