Zobrazit minimální záznam

Jednoduché polookruhy
dc.contributor.advisorKepka, Tomáš
dc.creatorKala, Vítězslav
dc.date.accessioned2017-04-18T11:08:12Z
dc.date.available2017-04-18T11:08:12Z
dc.date.issued2009
dc.identifier.urihttp://hdl.handle.net/20.500.11956/20770
dc.description.abstractZnámé tvrzení říká, že poud je komutativní těleso konečně generované jako okruh, je konečné. Tato práce je věnovaná zobecnění tohoto tvrzení - problému, jestli je kadý konečně generovaný ideálově jednoduchý komutativní polookruh aditivně idempotentní nebo konečný. Pomocí charakterizace ideálově jednoduchých polookruhů dokážeme, že tato otázka je ekvivalentní otázce, zda je každé komutativní parapolotěleso (polookruh, jehož multiplikativní pologrupa je grupou), které je konečně generované jako polookruh, aditivně idempotentní. V práci odvodíme řadu užitečných vlastností takovýchto parapolotěles a využijeme jich k vyřešení problému v jednogenerovaném případě. Na závěr uvedeme, jak je možné využít získaných poznatků o parapolotělesech k vyřešení dvougenerovaného případu pomocí zkoumání podpologrup Nm0.cs_CZ
dc.description.abstractA well-known statement says that if a commutative field is finitely generated as a ring, then it is finite. This thesis studies a generalization of this statement - problem, whether every finitely generated ideal-simple commutative semiring is additively idempotent or finite. Using the characterization of idealsimple semirings we prove that this question is equivalent to the question, whether every commutative parasemifield (i.e., a semiring whose multiplicative semigroup is a group), which is finitely generated as a semiring, is additively idempotent. In the thesis we deduce various useful properties of such parasemifields and use them to solve the problem in the one-generated case. Finally, we mention a way of using obtained properties of parasemifields for the solution of the two-generated case via the study of subsemigroups of Nm0.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleSimple Semiringsen_US
dc.typediplomová prácecs_CZ
dcterms.created2009
dcterms.dateAccepted2009-05-25
dc.description.departmentDepartment of Algebraen_US
dc.description.departmentKatedra algebrycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId49178
dc.title.translatedJednoduché polookruhycs_CZ
dc.contributor.refereeEl Bashir, Robert
dc.identifier.aleph001196328
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplineMatematické strukturycs_CZ
thesis.degree.disciplineMathematical structuresen_US
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra algebrycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Algebraen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematické strukturycs_CZ
uk.degree-discipline.enMathematical structuresen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.csZnámé tvrzení říká, že poud je komutativní těleso konečně generované jako okruh, je konečné. Tato práce je věnovaná zobecnění tohoto tvrzení - problému, jestli je kadý konečně generovaný ideálově jednoduchý komutativní polookruh aditivně idempotentní nebo konečný. Pomocí charakterizace ideálově jednoduchých polookruhů dokážeme, že tato otázka je ekvivalentní otázce, zda je každé komutativní parapolotěleso (polookruh, jehož multiplikativní pologrupa je grupou), které je konečně generované jako polookruh, aditivně idempotentní. V práci odvodíme řadu užitečných vlastností takovýchto parapolotěles a využijeme jich k vyřešení problému v jednogenerovaném případě. Na závěr uvedeme, jak je možné využít získaných poznatků o parapolotělesech k vyřešení dvougenerovaného případu pomocí zkoumání podpologrup Nm0.cs_CZ
uk.abstract.enA well-known statement says that if a commutative field is finitely generated as a ring, then it is finite. This thesis studies a generalization of this statement - problem, whether every finitely generated ideal-simple commutative semiring is additively idempotent or finite. Using the characterization of idealsimple semirings we prove that this question is equivalent to the question, whether every commutative parasemifield (i.e., a semiring whose multiplicative semigroup is a group), which is finitely generated as a semiring, is additively idempotent. In the thesis we deduce various useful properties of such parasemifields and use them to solve the problem in the one-generated case. Finally, we mention a way of using obtained properties of parasemifields for the solution of the two-generated case via the study of subsemigroups of Nm0.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra algebrycs_CZ
dc.identifier.lisID990011963280106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV