Zobrazit minimální záznam

Parkova domněnka
dc.contributor.advisorStanovský, David
dc.creatorLauschmannová, Anna
dc.date.accessioned2017-04-19T13:38:28Z
dc.date.available2017-04-19T13:38:28Z
dc.date.issued2009
dc.identifier.urihttp://hdl.handle.net/20.500.11956/22012
dc.description.abstractA finite algebra of finite type (i.e. in a finite language) is finitely based iff the variety it generates can be axiomatized by finitely many equations. Park's conjecture states that if a finite algebra of finite type generates a variety in which all subdirectly irreducible members are finite and of bounded size, then the algebra is finitely based. In this thesis, I reproduce some of the finite basis results of this millennium, and give a taster of older ones. The main results fall into two categories: applications of Jonsson's theorem from 1979 (Baker's theorem in the congruence distributive setting, and its extension by Willard to congruence meet-semidistributive varieties), whilst other proofs are syntactical in nature (Lyndon's theorem on two element algebras, Je·zek's on poor signatures, Perkins's on commutative semigroups and the theorem on regularisation). The text is self-contained, assuming only basic knowledge of logic and universal algebra, and stating the results we build upon without proof.en_US
dc.languageEnglishcs_CZ
dc.language.isoen_US
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titlePark's conjectureen_US
dc.typediplomová prácecs_CZ
dcterms.created2009
dcterms.dateAccepted2009-09-16
dc.description.departmentDepartment of Algebraen_US
dc.description.departmentKatedra algebrycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId48254
dc.title.translatedParkova domněnkacs_CZ
dc.contributor.refereeJežek, Jaroslav
dc.identifier.aleph001451173
thesis.degree.nameMgr.
thesis.degree.levelmagisterskécs_CZ
thesis.degree.disciplineMatematické strukturycs_CZ
thesis.degree.disciplineMathematical structuresen_US
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra algebrycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Algebraen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csMatematické strukturycs_CZ
uk.degree-discipline.enMathematical structuresen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.enA finite algebra of finite type (i.e. in a finite language) is finitely based iff the variety it generates can be axiomatized by finitely many equations. Park's conjecture states that if a finite algebra of finite type generates a variety in which all subdirectly irreducible members are finite and of bounded size, then the algebra is finitely based. In this thesis, I reproduce some of the finite basis results of this millennium, and give a taster of older ones. The main results fall into two categories: applications of Jonsson's theorem from 1979 (Baker's theorem in the congruence distributive setting, and its extension by Willard to congruence meet-semidistributive varieties), whilst other proofs are syntactical in nature (Lyndon's theorem on two element algebras, Je·zek's on poor signatures, Perkins's on commutative semigroups and the theorem on regularisation). The text is self-contained, assuming only basic knowledge of logic and universal algebra, and stating the results we build upon without proof.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra algebrycs_CZ
dc.identifier.lisID990014511730106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV