dc.contributor.advisor | Kopa, Miloš | |
dc.creator | Kozmík, Václav | |
dc.date.accessioned | 2017-04-20T13:53:34Z | |
dc.date.available | 2017-04-20T13:53:34Z | |
dc.date.issued | 2010 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/26959 | |
dc.description.abstract | Předložená práce se zabývá výběrem optimálního portfolia pomocí "mean-risk" modelů. Hlavním cílem práce je zkoumat konvergenci aproximativních řešení pomocí generovaných scénářů k analytickému řešení a její citlivost na zvolené míře rizika a předpokladu spojitého rozdělení. Zkoumané míry rizika zahrnují rozptyl, VaR, cVaR, absolutní odchylku a semivarianci. Pro normální a Studentovo rozdělení prezentujeme analytická řešení pro všechny míry rizika, pro logaritmicko-normální rozdělení použijeme aproximativní předpoklad, že součet logaritmicko-normálních náhodných veličin má přibližně logaritmicko-normální rozdělení. Pro všechny míry rizika také odvodíme optimalizační úlohu pro případ diskrétních scénářů a získaná řešení porovnáme s analytickým řešením. V rámci generování scénářů je výpočet několikrát opakován a prezentujeme vlastní metodu, která umožňuje pomocí shlukové analýzy najít optimální řešení. Všechny optimalizační úlohy jsou přepsány do jazyka GAMS a samotné testování a odhady jsou realizovány vlastním programem v jazyce C++. | cs_CZ |
dc.description.abstract | Present work deals with the portfolio selection problem using mean-risk models. The main goal of this work is to investigate the convergence of approxi mate solutions using generated scenarios to the analytic solution and its sensitivity to chosen risk measure and probability distribution. The considered risk measures are: variance, VaR, cVaR, absolute deviation and semivariance. We present analytical solutions for all risk measures under the assumption of normal or Student distribution. For log-normal distribution, we use the approximate assumption that the sum of log-normal random variables has log-normal distribution. Optimization models for discrete scenarios are derived for all risk measures and compared with analytical solution. In case of approximate solution with scenarios, we repeat the procedure multiple times and present our own approach to nding the optimal solution using the cluster analysis. All optimization models are written in GAMS language. Testing and estimating are realized using an application developed in C++ language. | en_US |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.title | Eficience portfolií při spojitém rozdělení výnosů | cs_CZ |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2010 | |
dcterms.dateAccepted | 2010-05-14 | |
dc.description.department | Department of Probability and Mathematical Statistics | en_US |
dc.description.department | Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 62091 | |
dc.title.translated | Portfolio efficiency with continuous probability distribution of returns | en_US |
dc.contributor.referee | Dupačová, Jitka | |
dc.identifier.aleph | 001393862 | |
thesis.degree.name | Mgr. | |
thesis.degree.level | navazující magisterské | cs_CZ |
thesis.degree.discipline | Pravděpodobnost, matematická statistika a ekonometrie | cs_CZ |
thesis.degree.discipline | Probability, mathematical statistics and econometrics | en_US |
thesis.degree.program | Matematika | cs_CZ |
thesis.degree.program | Mathematics | en_US |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Probability and Mathematical Statistics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Pravděpodobnost, matematická statistika a ekonometrie | cs_CZ |
uk.degree-discipline.en | Probability, mathematical statistics and econometrics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.cs | Předložená práce se zabývá výběrem optimálního portfolia pomocí "mean-risk" modelů. Hlavním cílem práce je zkoumat konvergenci aproximativních řešení pomocí generovaných scénářů k analytickému řešení a její citlivost na zvolené míře rizika a předpokladu spojitého rozdělení. Zkoumané míry rizika zahrnují rozptyl, VaR, cVaR, absolutní odchylku a semivarianci. Pro normální a Studentovo rozdělení prezentujeme analytická řešení pro všechny míry rizika, pro logaritmicko-normální rozdělení použijeme aproximativní předpoklad, že součet logaritmicko-normálních náhodných veličin má přibližně logaritmicko-normální rozdělení. Pro všechny míry rizika také odvodíme optimalizační úlohu pro případ diskrétních scénářů a získaná řešení porovnáme s analytickým řešením. V rámci generování scénářů je výpočet několikrát opakován a prezentujeme vlastní metodu, která umožňuje pomocí shlukové analýzy najít optimální řešení. Všechny optimalizační úlohy jsou přepsány do jazyka GAMS a samotné testování a odhady jsou realizovány vlastním programem v jazyce C++. | cs_CZ |
uk.abstract.en | Present work deals with the portfolio selection problem using mean-risk models. The main goal of this work is to investigate the convergence of approxi mate solutions using generated scenarios to the analytic solution and its sensitivity to chosen risk measure and probability distribution. The considered risk measures are: variance, VaR, cVaR, absolute deviation and semivariance. We present analytical solutions for all risk measures under the assumption of normal or Student distribution. For log-normal distribution, we use the approximate assumption that the sum of log-normal random variables has log-normal distribution. Optimization models for discrete scenarios are derived for all risk measures and compared with analytical solution. In case of approximate solution with scenarios, we repeat the procedure multiple times and present our own approach to nding the optimal solution using the cluster analysis. All optimization models are written in GAMS language. Testing and estimating are realized using an application developed in C++ language. | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.identifier.lisID | 990013938620106986 | |