dc.contributor.advisor | Maslowski, Bohdan | |
dc.creator | Bártek, Jan | |
dc.date.accessioned | 2017-04-20T15:54:00Z | |
dc.date.available | 2017-04-20T15:54:00Z | |
dc.date.issued | 2009 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/27417 | |
dc.description.abstract | The present work describes the relation between solutions of a special kind of nonlinear stochastic partial differential equation with multiplicative noise, driven by fractional Brownian motion (fBm), and the solutions of deterministic version of this equation. Solution of the stochastic equation is given explicitly by means of solution to the deterministic equation and trajectories of fBm. The geometric fractional Brownian motion plays an important role here. The solutions are considered both in strong and weak sense. Stochastic integral wrt. fBm with Hurst index H can be defined in various ways. Here we consider a Stratonovich type integral for H > 1/2. The results obtained are used for the study of properties of solution of stochastic porous media equation - the expected value of total mass of the solution and the long-time behaviour of the solution. | en_US |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.title | Geometrický Brownův pohyb v Hilbertově prostoru | cs_CZ |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2009 | |
dcterms.dateAccepted | 2009-09-14 | |
dc.description.department | Department of Probability and Mathematical Statistics | en_US |
dc.description.department | Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 48074 | |
dc.title.translated | Geometric Brownian motion in Hilbert space | en_US |
dc.contributor.referee | Beneš, Viktor | |
dc.identifier.aleph | 001171285 | |
thesis.degree.name | Mgr. | |
thesis.degree.level | navazující magisterské | cs_CZ |
thesis.degree.discipline | Pravděpodobnost, matematická statistika a ekonometrie | cs_CZ |
thesis.degree.discipline | Probability, mathematical statistics and econometrics | en_US |
thesis.degree.program | Matematika | cs_CZ |
thesis.degree.program | Mathematics | en_US |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Probability and Mathematical Statistics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Pravděpodobnost, matematická statistika a ekonometrie | cs_CZ |
uk.degree-discipline.en | Probability, mathematical statistics and econometrics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.en | The present work describes the relation between solutions of a special kind of nonlinear stochastic partial differential equation with multiplicative noise, driven by fractional Brownian motion (fBm), and the solutions of deterministic version of this equation. Solution of the stochastic equation is given explicitly by means of solution to the deterministic equation and trajectories of fBm. The geometric fractional Brownian motion plays an important role here. The solutions are considered both in strong and weak sense. Stochastic integral wrt. fBm with Hurst index H can be defined in various ways. Here we consider a Stratonovich type integral for H > 1/2. The results obtained are used for the study of properties of solution of stochastic porous media equation - the expected value of total mass of the solution and the long-time behaviour of the solution. | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.identifier.lisID | 990011712850106986 | |