Zobrazit minimální záznam

Geometric Brownian motion in Hilbert space
dc.contributor.advisorMaslowski, Bohdan
dc.creatorBártek, Jan
dc.date.accessioned2017-04-20T15:54:00Z
dc.date.available2017-04-20T15:54:00Z
dc.date.issued2009
dc.identifier.urihttp://hdl.handle.net/20.500.11956/27417
dc.description.abstractThe present work describes the relation between solutions of a special kind of nonlinear stochastic partial differential equation with multiplicative noise, driven by fractional Brownian motion (fBm), and the solutions of deterministic version of this equation. Solution of the stochastic equation is given explicitly by means of solution to the deterministic equation and trajectories of fBm. The geometric fractional Brownian motion plays an important role here. The solutions are considered both in strong and weak sense. Stochastic integral wrt. fBm with Hurst index H can be defined in various ways. Here we consider a Stratonovich type integral for H > 1/2. The results obtained are used for the study of properties of solution of stochastic porous media equation - the expected value of total mass of the solution and the long-time behaviour of the solution.en_US
dc.languageČeštinacs_CZ
dc.language.isocs_CZ
dc.publisherUniverzita Karlova, Matematicko-fyzikální fakultacs_CZ
dc.titleGeometrický Brownův pohyb v Hilbertově prostorucs_CZ
dc.typediplomová prácecs_CZ
dcterms.created2009
dcterms.dateAccepted2009-09-14
dc.description.departmentDepartment of Probability and Mathematical Statisticsen_US
dc.description.departmentKatedra pravděpodobnosti a matematické statistikycs_CZ
dc.description.facultyFaculty of Mathematics and Physicsen_US
dc.description.facultyMatematicko-fyzikální fakultacs_CZ
dc.identifier.repId48074
dc.title.translatedGeometric Brownian motion in Hilbert spaceen_US
dc.contributor.refereeBeneš, Viktor
dc.identifier.aleph001171285
thesis.degree.nameMgr.
thesis.degree.levelnavazující magisterskécs_CZ
thesis.degree.disciplinePravděpodobnost, matematická statistika a ekonometriecs_CZ
thesis.degree.disciplineProbability, mathematical statistics and econometricsen_US
thesis.degree.programMatematikacs_CZ
thesis.degree.programMathematicsen_US
uk.thesis.typediplomová prácecs_CZ
uk.taxonomy.organization-csMatematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistikycs_CZ
uk.taxonomy.organization-enFaculty of Mathematics and Physics::Department of Probability and Mathematical Statisticsen_US
uk.faculty-name.csMatematicko-fyzikální fakultacs_CZ
uk.faculty-name.enFaculty of Mathematics and Physicsen_US
uk.faculty-abbr.csMFFcs_CZ
uk.degree-discipline.csPravděpodobnost, matematická statistika a ekonometriecs_CZ
uk.degree-discipline.enProbability, mathematical statistics and econometricsen_US
uk.degree-program.csMatematikacs_CZ
uk.degree-program.enMathematicsen_US
thesis.grade.csVýborněcs_CZ
thesis.grade.enExcellenten_US
uk.abstract.enThe present work describes the relation between solutions of a special kind of nonlinear stochastic partial differential equation with multiplicative noise, driven by fractional Brownian motion (fBm), and the solutions of deterministic version of this equation. Solution of the stochastic equation is given explicitly by means of solution to the deterministic equation and trajectories of fBm. The geometric fractional Brownian motion plays an important role here. The solutions are considered both in strong and weak sense. Stochastic integral wrt. fBm with Hurst index H can be defined in various ways. Here we consider a Stratonovich type integral for H > 1/2. The results obtained are used for the study of properties of solution of stochastic porous media equation - the expected value of total mass of the solution and the long-time behaviour of the solution.en_US
uk.file-availabilityV
uk.publication.placePrahacs_CZ
uk.grantorUniverzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistikycs_CZ
dc.identifier.lisID990011712850106986


Soubory tohoto záznamu

Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail
Thumbnail

Tento záznam se objevuje v následujících sbírkách

Zobrazit minimální záznam


© 2017 Univerzita Karlova, Ústřední knihovna, Ovocný trh 560/5, 116 36 Praha 1; email: admin-repozitar [at] cuni.cz

Za dodržení všech ustanovení autorského zákona jsou zodpovědné jednotlivé složky Univerzity Karlovy. / Each constituent part of Charles University is responsible for adherence to all provisions of the copyright law.

Upozornění / Notice: Získané informace nemohou být použity k výdělečným účelům nebo vydávány za studijní, vědeckou nebo jinou tvůrčí činnost jiné osoby než autora. / Any retrieved information shall not be used for any commercial purposes or claimed as results of studying, scientific or any other creative activities of any person other than the author.

DSpace software copyright © 2002-2015  DuraSpace
Theme by 
@mire NV