dc.contributor.advisor | Lachout, Petr | |
dc.creator | Zymáková, Iva | |
dc.date.accessioned | 2017-04-20T16:52:05Z | |
dc.date.available | 2017-04-20T16:52:05Z | |
dc.date.issued | 2009 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/27649 | |
dc.description.abstract | As a transportation problem we usually denote one of the classical problems of the linear programming. This is just a very special case of more general problem, which is sometimes called Kantorovich transportation problem. I describe Kantorovich problem and its solution in some special cases in this work. Particularly, I describe the solution of the problem with quadratic cost and the solution of the problem with concave cost on the real line, in detail. At the end of the text, I show how the solution of the general problem could be approximated by the solutions of linear task. I solve the problem with some common distributions and with three typical cost functions { linear, strictly convex and strictly concave. | en_US |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.title | Dopravní problém | cs_CZ |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2009 | |
dcterms.dateAccepted | 2009-06-04 | |
dc.description.department | Department of Probability and Mathematical Statistics | en_US |
dc.description.department | Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 48634 | |
dc.title.translated | Transportation problem | en_US |
dc.contributor.referee | Houda, Michal | |
dc.identifier.aleph | 001119699 | |
thesis.degree.name | Mgr. | |
thesis.degree.level | navazující magisterské | cs_CZ |
thesis.degree.discipline | Pravděpodobnost, matematická statistika a ekonometrie | cs_CZ |
thesis.degree.discipline | Probability, mathematical statistics and econometrics | en_US |
thesis.degree.program | Matematika | cs_CZ |
thesis.degree.program | Mathematics | en_US |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Probability and Mathematical Statistics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Pravděpodobnost, matematická statistika a ekonometrie | cs_CZ |
uk.degree-discipline.en | Probability, mathematical statistics and econometrics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.en | As a transportation problem we usually denote one of the classical problems of the linear programming. This is just a very special case of more general problem, which is sometimes called Kantorovich transportation problem. I describe Kantorovich problem and its solution in some special cases in this work. Particularly, I describe the solution of the problem with quadratic cost and the solution of the problem with concave cost on the real line, in detail. At the end of the text, I show how the solution of the general problem could be approximated by the solutions of linear task. I solve the problem with some common distributions and with three typical cost functions { linear, strictly convex and strictly concave. | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.identifier.lisID | 990011196990106986 | |