dc.contributor.advisor | Keprta, Stanislav | |
dc.creator | Selementová, Martina | |
dc.date.accessioned | 2017-04-20T16:52:31Z | |
dc.date.available | 2017-04-20T16:52:31Z | |
dc.date.issued | 2009 | |
dc.identifier.uri | http://hdl.handle.net/20.500.11956/27651 | |
dc.description.abstract | The rst part of the present work focuses on expected risk of loan portfolio in sense of capital adequacy within IRB approach with accent on input parameters PD, LGD, E and M. We deal with determining of speci c provision to incurred credit loss in compliance with IAS 39 and regarding the analysis of both approaches we show, that in recent conditions speci c provision does not correspond with expected loss as required by Basel II. Next we introduce the internal models for estimating PD, LGD and CF, which are inputs to the calculation of expected loss and partly speci c provision. We discuss the expected loss as a factor determining the nal value of a loan and we show a calculation of risk premium based on the time to default. Last we compare current method for calculation of capital requirement with method based on conditional loss given default. | en_US |
dc.language | Čeština | cs_CZ |
dc.language.iso | cs_CZ | |
dc.publisher | Univerzita Karlova, Matematicko-fyzikální fakulta | cs_CZ |
dc.title | Očekávané riziko úvěrového portfolia | cs_CZ |
dc.type | diplomová práce | cs_CZ |
dcterms.created | 2009 | |
dcterms.dateAccepted | 2009-09-22 | |
dc.description.department | Department of Probability and Mathematical Statistics | en_US |
dc.description.department | Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.description.faculty | Faculty of Mathematics and Physics | en_US |
dc.description.faculty | Matematicko-fyzikální fakulta | cs_CZ |
dc.identifier.repId | 46854 | |
dc.title.translated | Expected Risk of Loan Portfolio | en_US |
dc.contributor.referee | Herman, Jiří | |
dc.identifier.aleph | 001171479 | |
thesis.degree.name | Mgr. | |
thesis.degree.level | navazující magisterské | cs_CZ |
thesis.degree.discipline | Finanční a pojistná matematika | cs_CZ |
thesis.degree.discipline | Financial and insurance mathematics | en_US |
thesis.degree.program | Matematika | cs_CZ |
thesis.degree.program | Mathematics | en_US |
uk.thesis.type | diplomová práce | cs_CZ |
uk.taxonomy.organization-cs | Matematicko-fyzikální fakulta::Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
uk.taxonomy.organization-en | Faculty of Mathematics and Physics::Department of Probability and Mathematical Statistics | en_US |
uk.faculty-name.cs | Matematicko-fyzikální fakulta | cs_CZ |
uk.faculty-name.en | Faculty of Mathematics and Physics | en_US |
uk.faculty-abbr.cs | MFF | cs_CZ |
uk.degree-discipline.cs | Finanční a pojistná matematika | cs_CZ |
uk.degree-discipline.en | Financial and insurance mathematics | en_US |
uk.degree-program.cs | Matematika | cs_CZ |
uk.degree-program.en | Mathematics | en_US |
thesis.grade.cs | Výborně | cs_CZ |
thesis.grade.en | Excellent | en_US |
uk.abstract.en | The rst part of the present work focuses on expected risk of loan portfolio in sense of capital adequacy within IRB approach with accent on input parameters PD, LGD, E and M. We deal with determining of speci c provision to incurred credit loss in compliance with IAS 39 and regarding the analysis of both approaches we show, that in recent conditions speci c provision does not correspond with expected loss as required by Basel II. Next we introduce the internal models for estimating PD, LGD and CF, which are inputs to the calculation of expected loss and partly speci c provision. We discuss the expected loss as a factor determining the nal value of a loan and we show a calculation of risk premium based on the time to default. Last we compare current method for calculation of capital requirement with method based on conditional loss given default. | en_US |
uk.file-availability | V | |
uk.publication.place | Praha | cs_CZ |
uk.grantor | Univerzita Karlova, Matematicko-fyzikální fakulta, Katedra pravděpodobnosti a matematické statistiky | cs_CZ |
dc.identifier.lisID | 990011714790106986 | |